

MORE FROM A BOOK APART

Design for Real Life
Eric Meyer & Sara Wachter-Boettcher

Git for Humans
David Demaree

Going Responsive
Karen McGrane

Responsive Design: Patterns & Principles
Ethan Marcotte

Designing for Touch
Josh Clark

Responsible Responsive Design
Scott Jehl

You’re My Favorite Client
Mike Monteiro

On Web Typography
Jason Santa Maria

Sass for Web Designers
Dan Cederholm

Just Enough Research
Erika Hall

Content Strategy for Mobile
Karen McGrane

Visit abookapart.com for our full list of titles.

http://abookapart.com/

Copyright © 2016 Chris Coyier
All rights reserved

Publisher: Je�rey Zeldman
Designer: Jason Santa Maria
Executive Director: Katel LeDû
Editor: Caren Litherland
Technical Editor: Chris Lilley
Copyeditor: Lisa Maria Martin
Proofreader: Katel LeDû
Compositor: Rob Weychert
Ebook Producer: Ron Bilodeau

ISBN: 978-1-937557-43-0

A Book Apart
New York, New York
http://abookapart.com

http://abookapart.com/

FOREWORD

RARELY, IF EVER, has a web project of mine been completed without
Chris Coyier’s help. Not in person of course, but through the expansive
resource that is CSS-tricks.com. Whether I was scouring Google in a
panic mere hours before a deadline, or casually trying to remember how
exactly those @#$%&! CSS columns work, Chris and CSS Tricks were
always there for me.

Think back to the last time you hunted for any CSS-related answers. I
bet CSS Tricks appeared at the top of your search results. For years,
Chris has been our super-smart web-design friend who always has our
backs. Who better, then, to guide us through the wide-ranging world
that is SVG?

SVG is changing the way we build the web. It’s an amazing, powerful
tool that is so simple, and yet so complex at the same time. As I like to
say, “The more you use SVG, the more you realize you don’t know SVG!”
Good thing Chris has written this book to help! (With much better
jokes, too.)

Chris includes everything you need to con�dently make decisions about
using SVG in your work. He doesn’t purport to tell you everything about
SVG; that would be unwieldy. But he does cover the most important
aspects of using SVG like a pro—all the things you need to know for a
strong start to your SVG adventures. Even if it’s not your �rst time using
SVG, you’re still guaranteed to �nd some helpful tips. Yes, Chris is that
good.

Learning SVG can seem like a daunting task, but it’s a breeze when Chris
guides you through it. Explore the full range of SVG capabilities, from
the foundations of embedding options to the really fun stu� like
animation (my favorite) and �lters. Get ready to jump into the wonderful
world of SVG with the most a�able guide I know!

—Val Head

http://css-tricks.com/

INTRODUCTION

HEY, EVERYBODY! Let’s be honest. Look how short this book is. We
don’t have much time together. I think it’s best if we get started on our
little adventure with SVG right away.

Here’s how easy it can be to use SVG (FIG 0.1):

No joke!

Confession: I was aware of SVG’s existence for years before I realized
that was possible, in part because early implementations of SVG required
the object or iframe element. SVG support on the HTML img element
came much later (and with caveats).

Where did this dog.svg �le come from, though? Well, the Noun Project
is a particularly great source of such images (http://bkaprt.com/psvg/00-
01/). There are lots of other places online to get your hands on vector
graphics, too. Pretty much all stock photography sites let you �lter
search results by “vector,” which is exactly what you need for SVG.

When downloading from the Noun Project, you have the option of
downloading the PNG or SVG version. If you download both, you’ll
wind up with two �les:

icon_364.png

icon_364.svg

They’re both the same image of a dog. If you link to either of them from
an img tag, you’ll get the same image of the same dog. So what’s the
di�erence?

http://bkaprt.com/psvg/00-01/

One important di�erence is �le size. The PNG version is 40 KB and the
SVG version is 2 KB—literally twenty times smaller! We’ll come back to
this later.

But the main di�erence is the �le format itself. PNG (like its GIF and JPG
cousins) is a raster image format. (Raster images are also sometimes called
bitmap images; although the terms are largely interchangeable, we’ll use
“raster” for the purposes of this book.) Think of a raster as a grid of
pixels. The di�erence between raster formats is largely about how that
grid of pixel information is compressed. This is all tremendously nerdy,
but the common denominator is: pixels.

FIG 0.1: SVG being used in an img tag in HTML.

SVG is di�erent. Think of SVG as a set of instructions for drawing
shapes. In fact, this is not a metaphor or abstraction: SVG is literally a set
of instructions for drawing shapes. I don’t think you can write a book
about SVG without saying this, so let’s get it out of the way: SVG stands
for Scalable Vector Graphics. “Vector” is the key word here. Think
geometry: points, lines, curves, polygons. The instructions in SVG read
something like this: “Go to such-and-such coordinate; draw a rectangle

that is so tall and so wide. Or draw a line, or an ellipse, or follow some
more complex instructions and draw the Coca-Cola logo.”

Because SVG images are just sets of drawing instructions, they aren’t tied

to any particular pixel dimensions. Our dog.svg is happy to be displayed

at 100 pixels wide or 2000 pixels wide. The exact same �le will be equally
visually crisp at any size. How excellent is that? I’ll answer for you since
this is a book and not a chat room, sheesh. It’s very excellent.

This is in stark contrast to raster images, whose �le size goes up
dramatically the larger the dimensions get. Imagine doubling the size of
an image from 100 by 100 pixels to 200 by 200 pixels, as is recommended
to ensure that a raster graphic remains visually crisp on a display with
twice the pixel density (or what Apple calls a “Retina” display).
Remember: that’s not twice as much pixel data; it’s four times as much.
Four times as much data being sent across the network. Four times as
much memory used to display it. Four times the bandwidth.

And Retina-style high resolution displays, which are around 2x normal
pixel density, are only the beginning. The pixel density of screens keeps
increasing. The screens look great, but they pose a huge challenge to
building for the web. As designers, we simply can’t quadruple the size of
our sites—at least not without serious implications, like losing impatient
customers to slow load times, or excluding users altogether.

Raster image bloat has become such a problem that we’ve invented new
HTML elements and attributes—by which I mean img srcset and
picture—to deal with it. With these newcomers, we’re able to prepare
and specify multiple images, and the most appropriate one will be used
by the browser for the current screen. That’s a book in itself; in fact,
Scott Jehl’s Responsible Responsive Design goes into much more detail
about these two elements than I can here (http://bkaprt.com/psvg/00-
02/). Often, a single SVG image will work as the most appropriate choice
for any screen, which keeps things simple.

Let’s review what we know about SVG so far:

http://bkaprt.com/psvg/00-02/

SVG can have a smaller �le size than a similar raster image.

SVG can be scaled to any size.

In�nite scalability means that SVG looks crisp at any size.

Pretty compelling, right?

Let’s add one more item to that list: SVG is supported in all modern
browsers, both mobile and desktop, at least three versions back. So why
the sudden resurgence of interest in SVG? Because even though SVG
itself is fairly old in web years, this level of ubiquitous support is fairly
recent.

In 1998, when SVG was introduced, bandwidth was the big concern; an
episode of The Web Ahead with Jen Simmons and Doug Schepers talks
about this (http://bkaprt.com/psvg/00-03/). Most people used dial-up
modems to access the internet; less than 3% had broadband
(http://bkaprt.com/psvg/00-04/). Sending drawing instructions across the
network was a very appealing idea, since it would be much faster than
sending actual graphics.

Today, we’re still worried about bandwidth, mainly because of the often
slow network connections of mobile devices. We’ll get into the nitty-
gritty of browser support (and what you can do for older browsers
without support) later.

For those of you raising your WELL ACTUALLY index �ngers, en garde!
There are caveats to a lot of this. I’ll attempt to cover all of them as we go
along.

THE SHAPES OF SVG

This isn’t going to be a book that dives deep into the SVG syntax, but it’s
worth being aware of the SVG elements that draw actual shapes. There
are surprisingly few of them (FIG 0.2).

http://bkaprt.com/psvg/00-03/
http://bkaprt.com/psvg/00-04/

FIG 0.2: Example shapes you can draw with SVG elements.

That’s it! All of these except path are considered “basic shapes.” path is
unique because it can draw anything, including any shape the other
elements can draw. In fact, under the hood, all the other shapes are just a
convenient syntax for a path—syntactic sugar, as they say. Drawing only
gets slightly more complicated when you factor in �lls, strokes, masks,
and �lters. But this is pretty much all SVG has to work with for drawing
things. That doesn’t mean it’s limited, though; these are fundamental
elements of design in any two-dimensional medium.

In fact, whether you realize it or not, I bet you’re already pretty good at
knowing when you’re looking at an image made from these shapes.

YOUR VECTOR INTUITION

While SVG might be somewhat new to you, I suspect that you can
already intuit whether an image is vector or raster. Which of the two bear
images in FIG 0.3 is a vector graphic?

FIG 0.3: Fairly obvious example of vector vs. raster.

It’s the one on the left. Easy, right? It looks like it was drawn from
mathematical curves and shapes, and in fact it was. Here’s another.
Which one of the bears in FIG 0.4 is vector?

FIG 0.4: Slightly less obvious example of vector vs. raster.

TRICK QUESTION. They are both vector. That crisp, cartoony look tells
us this is a vector graphic. They are both a bit more complex than the
vector bear from FIG 0.3, though. The �le size probably won’t be trivially
small, especially for the shaded teddy bear on the right. Let’s think about
this for a second.

For the most part, if a graphic is vector, it should be in SVG format for
use on the web. It will look better, be more e�cient, and open up
interesting design possibilities (which we’ll cover in this book). If a
graphic is raster, it should be in PNG or JPG format for use on the web.
Or, if it’s animated, in GIF format. Or WebP, a wonderful new format
that is the most e�cient of its kind but, like SVG, may require a fallback
(http://bkaprt.com/psvg/00-05/). These formats are still the most
appropriate choice. SVG isn’t meant to replace raster graphics, unless
they are being used to display a graphic that should have been vector to
begin with.

http://bkaprt.com/psvg/00-05/

The only time this rationale breaks down is if a vector image becomes
too complicated, and consequently the �le size of the SVG becomes too
big to be practical. Does the image consist of three combined circles?
That’s about as simple as it gets. Is the image an oak tree with hundreds
of detailed leaves? That means a lot of complexity and therefore a large
�le size. Sometimes it’s cut and dried (either use SVG or don’t);
sometimes it’s more ambiguous. Your best bet is to test the �le size both
ways, gauge how important SVG’s features are to the situation, and make
the call. But remember: if you choose raster, hang on to that original
vector source �le in case you need to edit it and save a new raster
version later!

SVG can also contain raster graphics. That may seem a bit weird at �rst,
but it makes more sense when you think of SVG as a set of instructions:
draw this thing over here, put this text over there, place this image back
here. It makes SVG a good choice for graphics that mix vector and raster
artwork.

Now that we know what some of SVG’s bene�ts are, where to �nd SVG
images, and when the SVG format is most appropriate, let’s turn to how
to actually use it on the web. We’ve really jumped right in here, haven’t
we? I didn’t want to linger too long in the shallow end of the pool. If
you’re a complete beginner, I hope you’ll stick with me and push
yourself to learn more.

I WANT TO COVER all of the di�erent ways we can use SVG on the web
right away so that it doesn’t feel so mysterious. There are three primary
ways, each of which can be useful.

SVG AS HTML img

We already covered this one. You can use SVG images in HTML like this:

Here we’re using img with SVG just as we would with any other
appropriate image format (like JPG, GIF, or PNG): to display an image
within content.

In FIG 1.1, the leaf itself is part of the content of the article. A content
management system (CMS) could conceivably produce leaf pages like this,
the leaf image being part of the content unique to that page.

Now imagine that that same CMS also automatically creates a weekly
newsletter of newly-added leaves to send to members of the site. The
newsletter uses a new type of template, but the content is the same. The
image of the leaf should appear wherever that content goes. That’s a
content image, and a perfect use for SVG-as-img.

FIG 1.1: Displaying an SVG image within some content (http://bkaprt.com/psvg/01-01/).

SVG AS CSS background-image

CSS plays well with SVG, too. It goes like this:

.main-header {

 background-image: url(header-bg.svg);

}

Here, you use SVG just as you would background images in any other
appropriate �le format: as part of the design of a page. In this case, the
image itself isn’t considered content.

In FIG 1.2, that spiky separator between the header and the content is a
very small, repeating SVG image. Is it a nice visual element for the site?
Yep. Is it a good use for SVG because it’s small, scalable, and visually
crisp? Yep. Is it part of the content? Nah.

FIG 1.2: Using SVG as a background-image in CSS (http://bkaprt.com/psvg/01-02/).

Imagine this is another blog post in our hypothetical CMS that sends out
the weekly newsletter. This imaginary newsletter is just a way for us to
think about what content is and the di�erent ways in which it might be
reused. But you can still design a newsletter. RSS is another story. When
content is syndicated, you likely have no control over how that content
is presented, aside from some barebones HTML. Would that spiky
separator need to go out in the newsletter? Probably not. It isn’t required
for the content to make sense. So this isn’t a content image; it’s an image
that is part of a template and part of the design applied to that template.
This is a perfect time for SVG as CSS background-image.

INLINE SVG

Another way to use SVG is to drop it right into the HTML, hence the
moniker “inline” SVG. Simply open up a .svg �le in a text editor, copy all
the code, and paste it into the HTML where you want that image to be.
Like this:

<h1>Hey, there’s an SVG image below me!</h1>

<svg viewBox="0 0 100 100">

 <rect x="10" y="10" width="100" height="100" />

 <!-- and all the shapes you need! —>

</svg>

SVG is right at home in HTML, because they are both markup languages
(you know: angle brackets with tags, attributes, and familiar stu� like
that). While SVG is a stand-alone image format, browsers that support
SVG will parse this SVG and render it right within the HTML document.
A document within a document!

This is a particularly compelling way to use SVG because:

You can style the individual shapes with CSS, the same CSS you
use for the rest of your site.

You can a�ect the shapes with JavaScript, the same JavaScript you
use for the rest of your site.

The page doesn’t need to make a network request for the image.

You can make copies easily via the use element. (We’ll cover that
later.)

You can handle accessibility as well as (or better than) you can
with other methods through the use of proper accessibility-
focused tags and ARIA attributes.

SVG and all of its descendant shapes are “in the DOM,” as they say. This
means that you have the same access and control over them that you

would over a div or h3 or any other element. We could give our robot
pretty red kneepads in CSS, have it talk when you click its mouth, dance
when you hover over it, or just about anything else you can imagine.
SVG used as img or background-image can’t be controlled in this way, nor
can it link to any other outside assets, like a stylesheet.

These things are unique to inline SVG, which makes it very powerful
and compelling to use. We’ll see inline SVG really sing a little later, when
we look at things like building an icon system with it, animating it, and
other design possibilities.

Those are the three primary ways you can use SVG on the web. There
are a handful of additional ways, including linking to SVG through
object, embed, or iframe elements. If you go that route, you retain some
of the same interactive possibilities you get with inline SVG, but with
the major caveat that everything needs to be embedded in the SVG
source itself or linked to independently. Reach for these solutions in
situations where inline SVG feels like too much “clutter” in the parent
document, or if you need the interactivity or ability to link to other
assets and don’t mind the extra network requests. Personally, I �nd the
use cases for these other methods few and far between, so I don’t think
we should squander what little time we have together on them.

FIG 1.3: An example of inline SVG in HTML (http://bkaprt.com/psvg/01-03/).

BROWSER SUPPORT

Let’s get more speci�c about browser support. After all, one thing that
makes SVG so exciting is the excellent browser support it enjoys. A few
notes �rst, though:

Even if a given browser doesn’t support SVG the way you want
to use it, there’s always a way to handle a fallback. That’s all just
part of the job, web buddies. We’ll cover that in Chapter 9.

SVG support isn’t always yep or nope. Even if a browser largely
supports SVG, particular features can have quirks. We’ll cover
those throughout the book as they crop up.

The tables in FIG 1.4 and 1.5 help explain the browser support situation
across desktop and mobile.

FIG 1.4: Support for SVG is robust across browsers—except for IE 8 and below.

FIG: 1.5: Support for SVG across the biggest mobile browsers.

Desktop browsers

SVG fares pretty well on the desktop (FIG 1.4). As you can see, support
looks pretty good across browsers—the only one to watch out for is IE 8
(and down).

Mobile browsers

On the mobile front, things are a little more complicated, but mostly
okay. There are far too many mobile browser/platform combos to detail
here, so let’s cover the biggest players (FIG 1.5).

The standout problems on mobile are Android 2.3 and down (no SVG
support at all) and lack of inline SVG support in Opera Mini.

If you’re interested in testing a speci�c combination of
browser/version/platform yourself, I’ve created a very simple test case
(http://bkaprt.com/psvg/01-04/). Also, the website Can I Use… tracks a
ton of SVG support information that is worth consulting
(http://bkaprt.com/psvg/01-05/).

Before we go too much further, let’s make sure we know how to get our
hands on SVG—either by creating it in vector software, or �nding it
online and working with it in that same software. That’s next.

http://bkaprt.com/psvg/01-04/
http://bkaprt.com/psvg/01-05/

http://graphic.com/

http://bkaprt.com/psvg/02-04/
http://bkaprt.com/psvg/02-05/
http://bkaprt.com/psvg/02-06/
http://bkaprt.com/psvg/02-07/
http://mondrian.io/

WE ’VE BEEN USING ICONS on websites since the dawn of...websites.
Styles come and go, but the functionality of icons is here to stay. They
aid in quick visual di�erentiation and assist in conveying meaning—even
across languages and cultures.

Take a look at a fairly simple page on GitHub.com (FIG 3.1).

All told, nearly two dozen icons there.

We could make each of those icons an image, like icon_pencil.svg, and

use them in our HTML like this:

That works. There is nothing inherently wrong with using img. But it
does mean that each unique image is a separate network request. That is,

http://github.com/

when a browser sees an img tag, it goes across the network to get that �le
and display it. The same is true for background images in CSS: every
unique image referenced is a separate network request.

FIG 3.1: Screenshot of the New Issue page on GitHub.com with the icons highlighted.

When thinking about web performance, one of the �rst things to look at
is reducing the number of network requests (sometimes called “HTTP
requests,” the protocol of the web—we’ll call them network requests
here). See Scott Jehl’s Responsible Responsive Design or Lara Hogan’s
Designing for Performance (http://bkaprt.com/psvg/03-01/) for more on
this.

http://bkaprt.com/psvg/03-01/

Ideally, we could make all of our icons a single network request. That’s
one ingredient in building an icon system. And really, there are only two
ingredients:

Serve icons as a single resource to make a website faster.

Make the system easy and convenient to use.

In fact, as front-end web development has been maturing, we have been
solving this problem over and over again. Reducing the number of
requests boosts performance to such an extent that we're almost always
willing to complicate development work in exchange. This is especially
true on mobile, where latency is so much higher
(http://bkaprt.com/psvg/03-02/).

One classic way to tackle an icon system—cleverly cribbed from video
game development—is with CSS sprites. A CSS sprite is one big raster
image with lots of smaller images placed onto it; YouTube puts this to
e�ective use (FIG 3.2).

http://bkaprt.com/psvg/03-02/

FIG 3.2: Example of a CSS sprite used by YouTube.com.

One big image means just one network request. To display one of the
smaller images (like a single icon), we would make an element the exact
size of the icon, use the large sprite image as the background-image in

CSS, and then adjust the background-position to reveal only the smaller

image.

The method is clever and e�ective. We can do the same thing with SVG:
lay out a bunch of vector graphics on a single artboard, export it as one
big SVG �le, and do the same background shifting trickery.

But as long as we’re going the SVG route, there’s an even better way.
Let’s go through building an inline SVG system step by step so you can
see how it works.

We’re working inside one big SVG, so we’ll start with this:

<svg>

</svg>

Between the opening and closing tags, we’ll put the paths that do the
actual drawing:

<svg>

 <!-- this draws the Twitter logo, one shape -->

 <path d="">

 <!-- this draws the CodePen logo, two separate shapes -->

 <path d="">

 <path d="">

</svg>

Then we’ll wrap those paths in g tags. The g tag in SVG is like a div in
HTML: it doesn’t do much by itself other than group the things inside it.
It’s mostly useful for referencing and applying styles that can a�ect
everything together.

<svg>

 <g id="icon-twitter>

 <path d="">

 </g>

 <g id="icon-codepen">

 <path d="">

 <path d="">

 </g>

</svg>

Then we’ll wrap all of that in a defs tag. A defs tag essentially says, “SVG,
don’t try to actually draw any of the stu� inside this tag; I’m just de�ning
it to use later.” The SVG element itself will still try to render, though, so
let’s make sure it doesn’t do that by shrinking it to nothing. Using
width="0" and height="0" or display="none" is better than using CSS to
hide the SVG; CSS takes longer to process, and style="display: none;"

can have weird consequences, like failing to work at all on some iOS
devices (http://bkaprt.com/psvg/03-03/).

<svg width="0" height="0" class="hide">

 <defs>

 <g id="icon-twitter">

 <path d="">

 </g>

 <g id="icon-codepen">

 <path d="">

 <path d="">

 </g>

 </defs>

</svg>

The chunk of SVG we’ve just built is our SVG icon system. We’re going
to be talking about this chunk of SVG a lot in this book, so let’s give it a
name: an SVG sprite.

As long as this SVG sprite is present in the HTML of our page, we can do
this anywhere we want to draw one of those icons:

<svg class="icon icon-twitter" viewBox="0 0 100 100">

 <title>@CoolCompany on Twitter</title>

 <use xlink:href="#icon-twitter" />

</svg>

This code snippet will draw that icon onto the page, just like an img
would. One new thing here is the viewBox attribute, which we’ll get to
soon. The other new element is use xlink:href, which essentially says,
“Go �nd the chunk of SVG that has this ID and replace me with a clone
of it.” That’s a beautiful thing right there. We can use xlink:href to draw
any bit of SVG anywhere we like and repeat it as many times as we want
without repeating actual drawing code.

You can see this in action in the footer on a previous design of CSS-
Tricks, which had a use-based icon system (FIG 3.3).

http://bkaprt.com/psvg/03-03/

FIG 3.3: SVG icons in use in the CSS-Tricks.com footer (css-tricks.com). Note the repetitive shapes.

These icons are properly accessible. They are nicely semantic. And—
perhaps best of all—we can size, position, and style them easily.

.icon {

 /* make it match the font-size */

 width: 1em;

 height: 1em;

 /* make it match the text color */

 fill: currentColor;

}

These values are a pretty cool little trick! Instead of explicitly styling the
SVG, we make it size and color itself to match the font properties. If we
drop that SVG into a button, it will absorb the styles already happening
in that button and style itself accordingly (FIG 3.4).

http://css-tricks.com/
https://css-tricks.com/

FIG 3.4: SVG icons automatically size themselves in proportion to the existing font-size.

USING symbol

We can improve this setup a bit, though. There is another element in
SVG that is perfect for icons: symbol. Think of symbol as “SVG within
SVG.”

Did you notice how we declared a viewBox on the svg where we drew the
Twitter icon? That viewBox is speci�c to that Twitter icon. It de�nes the
area in which that shape is drawn. It is essentially the coordinate system
for the points and the aspect ratio. A viewBox whose value is "0 0 100
100" is really saying, “The grid starts at 0, 0 and goes to 100 along the x-
axis and 100 along the y-axis.” And that has to be correct for each icon, or
it won’t draw correctly.

We also used a title attribute to make sure we had basic screen-reader
accessibility covered. We can shift the responsibility for both title and
viewbox to the symbol element. Plus, SVG already knows not to draw

symbol elements; it knows you are just de�ning them to use (actually
draw) later.

Our chunk of SVG where we build the icon system now looks like this:

<svg width="0" height="0" class="visually-hidden">

 <symbol id="icon-twitter" viewBox="0 0 100 100">

 <title>@CoolCompany on Twitter</title>

 <path d="...">

 </symbol>

 <symbol id="icon-codepen" viewBox="0 0 200 175">

 <title>See Our CodePen Profile</title>

 <path d="...">

 <path d="...">

 </symbol>

</svg>

And then, when we go to draw the icon somewhere on our page, we can
do less and avoid a lot of repetition if the icon is used in multiple places:

<svg class="icon icon-twitter">

 <use xlink:href="#icon-twitter" />

</svg>

The result is exactly the same as with the initial snippet; it’s just easier
and less error-prone when implementing. In the second, the use element
will draw the icon with the correct viewBox dimensions taken from the
symbol element. We don’t have to manually deal with viewBox anymore.
Plus, the �nal svg in the document will contain the correct title and
desc. See? Very awesome.

This still might look like a lot of code just to draw an icon, but it’s
comparable to any other icon-drawing technique, especially when you
consider what you get from this method. Semantically, our markup says,
“This is an image icon.” Screen readers can announce whatever we want
them to (“@CoolCompany on Twitter,” for example), or nothing at all if
that’s more appropriate. We also get resolution independence. We get

the ability to style the icon through CSS, and every other advantage of
inline SVG, because that’s exactly what we’re using. Imagine trying to get
all that functionality from, say, icon fonts—it would be di�cult for some
features and impossible for others!

Let’s look at another example of real-world usage. The curvy tabs on a
previous design of CSS-Tricks would have been di�cult to do in CSS
without substantial trickery (FIG 3.5). And speaking of trickery, I’ve seen
some pretty over-the-top demos of drawings using just HTML and CSS.
There is, of course, nothing wrong with a good bit of fun and
experimentation, but I usually can’t help but think, “You know, this is
what SVG is for.”

With inline SVG, we just de�ne that shape as a path once, make it a
symbol, and use it over and over as needed, even altering the style. And
even though we were talking about an icon system here, note that this
idea works for any SVG you want to use as part of a system.

FIG 3.5: Each of these curved tabs is the same path used over and over again with  a di�erent �l`l.

A NOTE ABOUT use AND CSS STYLING

Let’s say you have a symbol with two paths in it. Each path has a class,
like .path-1 and .path-2. In your CSS, you can target and style those

with no problem.

.path-1 {

 fill: red;

}

.path-2 {

 fill: yellow;

}

You can use the symbol wherever you like:

<svg class="icon">

 <use xlink:href="#my-icon" />

</svg>

Now say you’d like to create a variation on the normal styling. So you
use the .path-1 class on the svg as part of the selector.

.icon .path-1 {

 fill: green;

}

Sadly, that doesn’t work. use is kind of magical in that it clones the
elements inside the symbol and moves them into what is called the
Shadow DOM. You can look at the Shadow DOM by using the developer
tools in the browser (FIG 3.6).

FIG 3.6: The #shadow-root highlighted here in Chrome’s developer tools is the start of the Shadow
DOM for this use element. At this writing, in order to see the Shadow DOM in DevTools, you need
to go to Settings > General and make sure “Show user agent shadow DOM” is checked.

I don’t want to take us down a rabbit hole, but the Shadow DOM forms a
boundary that CSS selectors don’t go through. This may be remedied in
the future. I’ve seen no less than three ideas presented on how CSS
selectors might be able to penetrate the Shadow DOM. But for now,
there’s no good way to do variations on the same symbol—it’s best just to
create another copy and style it di�erently. GZIP will be your friend
there, as it does a great job of compressing repetitive text.

There’s a trick for getting two con�gurable colors per use, though.
Imagine this symbol:

<symbol id="icon">

 <path d=" … " />

 <path fill="currentColor" d=" … " />

<symbol>

We’ll use it more than once:

<svg class="icon icon-1">

 <use xlink:href="#icon" />

</svg>

<svg class="icon icon-2">

 <use xlink:href="#icon" />

</svg>

The �rst path has no �ll of its own. It will default to black unless its
parent svg has a �ll set, in which case that color will cascade down to it.
That’s color number one. With the second path, we’ve used the keyword
currentColor for the �ll (you could do this from CSS as well). Whatever
color you set on the parent svg will be used for the �ll on it. That’s color
number two.

It goes like this:

.icon-1 {

 fill: red; /* Color #1 */

 color: green; /* Color #2 */

}

.icon-2 {

 fill: pink; /* Color #1 */

 color: orange; /* Color #2 */

}

I intentionally took a roundabout way to get here. Sorry about that! I
wanted to sneak in some practical SVG learnin’. symbol is de�nitely the
way to go when building an SVG system.

FIG 3.7: Two con�gurable colors per use. Remember that there is no limit to the number of colors
an icon can use; this is just for variations on the exact same icon used more than once.

WHERE DO WE PUT ALL THOSE symbols?

Our SVG sprite will work great if we put it in the HTML. It won’t show
up visually, and we’ll easily be able to use all the icons it contains.

Often, we work with HTML in the form of templates—perhaps our CMS
gives us template �les to work with, or we’re using some other
framework that compiles templates into the �nal HTML output.
Dropping a large chunk of SVG code in our templates may feel unwieldy
or messy. There is likely some way to “include” the SVG in that template,
making things more manageable. So where do you put that “include”?

Well, putting the SVG sprite at the top of the document (that is, right
after the opening body tag) is the least buggy way to proceed, because
some browsers (like Safari on iOS 8.1) won’t render the use at all if the
sprite is de�ned after it. That’s a shame, because putting the sprite at the

bottom of the document would be better for performance, in the spirit
of “deferred loading” of things deemed less important than the primary
content.

Also, using file_get_contents() is safer than include() in PHP, as XML
like <?xml will have trouble going through the PHP parser. Say you’re
using PHP:

</head>

<body>

 <!-- include your SVG sprite here -->

 <?php echo file_get_contents("svg/sprite.svg"); ?>

 ...

 <!-- use your sprite, here -->

 <svg class="logo">

 <use xlink:href="#logo" />

 </svg>

The advantage of doing it this way is that there are zero network requests
for the icons. That’s pretty nice!

But there are a couple of downsides to this approach. It isn’t perfectly
compatible with server-side HTML caching. If the site does that, every
single page will have this identical chunk of SVG in it, which isn’t very
e�cient (“bloated” cache, you could call it). Plus, browsers will need to
read and parse that whole chunk of SVG with every single page load,
before it gets to the (arguably more important) content below.

Including the sprite server-side also doesn’t take advantage of browser
caching very well. Browser caching happens when a browser holds onto
a �le so a network request doesn’t need to be made for it. If we move our
chunk of SVG into a separate �le, we can tell the browser to cache it, and
we’ve solved both problems.

We can make sure the browser caches the sprite by putting the �le path
in the xlink:href attribute of the use element. That’s right, it doesn’t

have to be just an #identifier; it can be a �le path (or external source):

<svg class="icon icon-twitter">

 <use xlink:href="/svg/sprite.svg#icon-twitter" />

</svg>

To ensure the �le is cached by the browser, you could put this code in
the site’s .htaccess �le (assuming an Apache server):

Ensure SVG is served with the correct file type

AddType image/svg+xml .svg .svgz

Add browser caching to .svg files

<IfModule mod_expires.c>

 ExpiresActive on

 ExpiresByType image/svg+xml "access plus 1 month"

</IfModule>

Remember that if you alter the icons in any way, you’ll need to make
sure fresh copies are used, not the stale ones in the cache. One way to do
that is to use a URL parameter on the �le path, making it look like a
di�erent �le to the browser. I use a simple system like this sometimes:

<?php $version = "1.2"; ?>

<svg class="icon icon-twitter">

 <use xlink:href="/svg/symbols.svg?version=<?php echo $version; ?
>#icon-twitter" />

</svg>

You can get as clever with that as you want to, but the basic concept
holds true. Don’t write this one o� as too much work! Remember that
network requests are slow, so browser caching is one of the most
e�ective ways to speed up a website.

There’s something you need to keep in mind when it comes to use with
an external source: the cloned elements no longer share the same DOM,
the way they do with internal references. You’ll be able to inspect the
Shadow DOM and it will appear the same, but you can’t, for instance,

style a path directly from CSS on the parent document, or
querySelectorAll for an element from JavaScript on the parent
document. You would have to do those things from inside the external
source itself. You can, however, apply a �ll color to the parent svg and
have that cascade through the other elements and work, so use with an
external source is still pretty great for icon systems.

THE FUTURE: FRAGMENT IDENTIFIERS AND HTTP/2

You know how we’ve been referencing icons in the use element with the
hash symbol, like #icon-twitter? That’s a fragment identi�er. Fragment
identi�ers are so useful that they are essentially the basis for this entire
icon system trip we’re on. But SVG fragment identi�ers are coming to
HTML and CSS as well!

For instance, in an image tag in HTML:

Or in a background-image in CSS:

.logo {

 background: url("sprite.svg#logo(viewBox(0,0,32,32))");

}

Support for fragment identi�ers used this way in HTML and CSS isn’t
quite here. If it were, you could base an entire icon system on it, I
reckon, as it nicely solves the one-request issue. I delved into the details
of fragment identi�ers in an article for CSS-Tricks
(http://bkaprt.com/psvg/03-07/).

Speaking of one-request, even that is destined to be a relic of the past.
HTTP/2, the next iteration of HTTP1.x (which we’re all using now), has
many features that will actually encourage leaving individual icons to
individual network requests. It’s pretty technical stu�, but, for example,

http://bkaprt.com/psvg/03-07/

HTTP/2 connections will remain open and multiple; compressed
requests can happen in parallel. That means multiple requests aren’t
much costlier than single requests, if at all. It also means that icons can
be cached individually, so changing a single one doesn’t invalidate the
cache on the entire set. Concatenating requests will become a bad idea
instead of a good one!

MAKING use WORK WITH AN EXTERNAL SOURCE

No version of Internet Explorer (and some older versions of WebKit

browsers) currently supports �le paths in use xlink:href="". These

browsers support use just �ne, but only with inline SVG and fragment
identi�ers (e.g., #hash), not URLs. Luckily, there’s a way around that!

To poly�ll this external reference feature (that is, make it work in
browsers where it doesn’t), try Jonathan Neal’s SVG for Everybody script
(http://bkaprt.com/psvg/03-04/). You could include the script on the page
like this:

 <script src="/js/svg4everybody.min.js"></script>

</body>

More likely, though, you’d concatenate it into the rest of the scripts
you’re loading on your site.

The script is tiny (less than 1 KB before compression), simple, and clever.
Here’s how it works: it runs a test to see if the current browser doesn’t
support externally sourced SVG. If that’s the case, it performs a network
request for the SVG and then drops in what is needed, as if we were
using straight-up inline SVG. If the browser supports externally sourced
SVG, the script does nothing.

Here’s a common example. You put this in your HTML:

<svg class="logo">

http://bkaprt.com/psvg/03-04/

 <use xlink:href="/svg/sprite.svg#logo" />

</svg>

If SVG for Everybody determines that the current browser supports this,
it leaves it alone. If SVG for Everybody determines that the current
browser does not support this, it converts the earlier code into this:

<svg class="logo">

 <path id="logo" d="..." />

</svg>

The second snippet is more widely supported by browsers.

To perform this sleight of hand, SVG for Everybody tests the browser’s
User-Agent string—typically a frowned-upon practice in our �eld
because of how easy it is to screw it up or get the opposite result of what
you need. Here’s the test SVG for Everybody runs:

/Trident\/[567]\b/.test(navigator.userAgent) ||
(navigator.userAgent.match(/AppleWebKit\/(\d+)/) || [])[1] < 537

The result will be either true or false, generally matching older versions
of Internet Explorer and WebKit-based browsers. If it comes back true,
the script will do the rest of its magic. I don’t think the test is so
o�ensive in this particular case because:

A false positive would mean it still works (use gets replaced).

A false negative doesn’t necessarily mean the browser doesn’t
support the external linking.

But by no means is it perfect. The false negative scenario can pose a
problem sometimes. For instance, Android 3 through 4.2 could bene�t
from this script, but it returns a false negative, so the script doesn’t do
anything. Bummer.

AJAX FOR THE SPRITE

Another solution is to do an Ajax request for the SVG sprite and drop it
onto the page. This is a nice �x, as the SVG sprite can still be browser
cached, and it completely eliminates the external asset issue. It’s just a
little trickier than you might think.

Elements in the DOM have their own namespace that essentially tells the
browser how to handle them. SVG and HTML have di�erent
namespaces. When HTML is read and parsed by the browser and it �nds
an svg tag, it automatically applies the correct namespace. But if you just
append an svg tag into the DOM yourself, that SVG won’t have the
correct namespace by default, and thus it won’t behave like an SVG
element.

To create a new SVG element in JavaScript with the proper namespace,
you need to do something like this:

var svgElement = document.createElementNS("www.w3.org/2000/svg",
"svg");

That goes for the SVG element and any child SVG element you append.

If we create a normal HTML element, like a div, and then append the
SVG sprite onto that div, the parser will run on it and ensure that
everything is namespaced correctly.

So here’s how we can use Ajax for our SVG sprite and add it to the page
properly:

var ajax = new XMLHttpRequest();

ajax.open("GET", "svg/sprite.svg", true);

ajax.onload = function(e) {

 var div = document.createElement("div");

 div.innerHTML = ajax.responseText;

 document.body.insertBefore(div, document.body.childNodes[0]);

}

ajax.send();

Or you can ensure that the response type is a document, which also gets
everything in good shape to append, and drop that in without needing
the div.

var ajax = new XMLHttpRequest();

ajax.open("GET", "svg/sprite.svg", true);

ajax.responseType = "document";

ajax.onload = function(e) {

 document.body.insertBefore(ajax.responseXML.documentElement,
document.body.childNodes[0]);

}

ajax.send();

If you’re using jQuery to help with Ajax, the response will automatically
be a document. You need to force that into a string before inserting it
into the div, like this:

$.get("svg/sprite.svg", function(data) {

 var div = document.createElement("div");

 div.innerHTML = new
XMLSerializer().serializeToString(data.documentElement);

 document.body.insertBefore(div, document.body.childNodes[0]);

});

We can see that the caching is in e�ect by looking at the Cache-Control
header of the XHR request for the SVG �le (FIG 3.9). Lookin’ good.

FIG 3.8: It’s working! Cross-browser examples of SVG inserted via Ajax (http://bkaprt.com/psvg/03-
05/). Shown in OS X Chrome, Windows 7 / IE 9, and Android 4.0 Native Browser.

FIG 3.9: Proof of proper browser cache headers being served. Note the Cache-Control:max-
age=2592000.

http://bkaprt.com/psvg/03-05/

FIG 3.10: When you compare an icon font to an inline SVG icon system point for point, the SVG
system emerges the clear winner.

SVG VS. THAT OTHER ICON SYSTEM: ICON FONTS

The reason I’m taking the time to go through all of this is because inline
SVG really does make for an awesome icon system. It’s even better, dare
I say, than another extremely popular way to approach an icon system:
icon fonts. An icon font is a custom font �le that you load in CSS
through an @font-face declaration; the font’s glyphs are actually icons.

Icon fonts have one distinct advantage over an inline SVG icon system:
they are supported in even really old versions of Internet Explorer,
which only supports SVG in versions 9 and up. Every other comparable
feature between the two comes down squarely on the side of SVG
(http://bkaprt.com/psvg/03-06/).

I hate to make this a battle, but hey, let’s make this a battle (FIG. 3.10).

What makes an inline SVG icon system even more persuasive: you don’t
have to build that SVG sprite yourself! You can make your computer do
it for you. That’s coming up in the next chapter.

We just covered a lot of ground. Think about the inline SVG icon system
we reviewed and everything that went into it: All those symbol elements
that wrap the shapes that draw the icons. The viewBox that de�nes the
drawing area for them. Making sure they have unique IDs. Con�rming
they have accessibility tags that have been done correctly. Hiding the
SVG element itself.

If we wanted to, we could do all that work by hand. There’s value in a
little elbow grease and hard work, right? No. There isn't. Not when these
tasks can easily be handled by a computer. So next we'll look at build
tools—automated processes that will make quick work of these things
and simplify our lives as developers.

http://bkaprt.com/psvg/03-06/

A BUILD TOOL is a name for any bit of software that facilitates tasks that
help us build websites. The most common tasks for a build tool are
things like compiling code with preprocessors (see Dan Cederholm’s Sass
for Web Designers) or compressing and concatenating other assets (see
Scott Jehl’s Responsible Responsive Design). But a task can be anything.
Computer! Move these �les over here! Rename them like this! Add this
comment at the top of them! You know, things that computers are faster
and better at than humans.

One thing we can have a build tool do for us is create an SVG sprite—
that chunk of SVG symbols I introduced in the last chapter—
automatically from a folder of separate SVG images. It makes this
work�ow possible:

1. Create and edit an SVG �le in Illustrator as needed.

2. Watch the build tool do its magic by automatically adding the
SVG �le we just created or edited to the SVG sprite.

3. Use the icons easily in your HTML.

4. Revel in the majesty of beautiful icons on your site.

You no longer have to do any of the tedious manual construction of SVG
in the special format needed (as we did in the last chapter); that all
happens almost instantly as you work. And, unlike fat-�ngered humans,
the build process won’t make any mistakes while doing it.

FIG 4.1: An automated SVG design work�ow can start in GUI software like Adobe Illustrator and
end on the actual website without too much manual work in between.

ICOMOON

One of my favorite build tools for SVG is IcoMoon
(http://bkaprt.com/psvg/04-01/). Its website has a very simple interface: a
big grid of icons. First, select the icon you want, and then hit the
Generate SVG & More button (FIG 4.2).

Then click the SVG Download button (FIG 4.3). You’ll get a ZIP �le that
includes the SVG sprite. That’s a build tool!

http://bkaprt.com/psvg/04-01/

The sprite, called svgdefs.svg, is in the root of that folder. It’s a
production-ready sprite �le, and you can use it in any of the ways
covered in the last chapter.

You aren’t limited to the icons on the IcoMoon site; you can import your
own. You can also create an account so that you can save your projects,
making it easy to come back and add/remove/adjust icons and reexport
them.

FIG 4.2: The IcoMoon interface.

FIG 4.3: SVG exporting from IcoMoon.

GRUNT

IcoMoon has almost no learning curve and does a great job, but you can
still level up. Let’s take a look at using Grunt. It’s a little more complex,
but I promise you can handle it. I wrote an article that helped a lot of
people get started with it called “Grunt For People Who Think Things
Like Grunt Are Weird And Hard” (http://bkaprt.com/psvg/04-02/), which
I’d recommend as a primer.

http://bkaprt.com/psvg/04-02/

In a nutshell: you simply con�gure tasks for Grunt to do, run it, and it
does them. Grunt, preprocess my CSS! Grunt, minify my JavaScript! And in
our case: Grunt, turn my individual SVGs into an SVG sprite! (Grunt likes it
when you are very clear and commanding like that.)

Note that Grunt can’t run any of these tasks by itself. That’s what plugins
are for. The one we’re going to use is grunt-svgstore
(http://bkaprt.com/psvg/04-03/). Its sole purpose is spriting SVG. Once
we’ve installed the plugin, we can con�gure Grunt to do what we want.
We do this with Grunt�le.js, which lives in your project’s root folder:

module.exports = function(grunt) {

 grunt.initConfig({

 svgstore: {

 default: {

 files: {

 "includes/defs.svg": ["svg/*.svg"]

 }

 }

 }

 });

 grunt.loadNpmTasks("grunt-svgstore");

 grunt.registerTask("default", ["svgstore"]);

};

And now in plain English:

Hey, Grunt. I’m going to keep all of my individual SVG images in a folder
called “svg”. When I type “grunt” into the command line, �nd all of those
images and process them into an SVG sprite. Name that sprite defs.svg and put
it in a folder called “includes”.

Leveling up a little more, we can make that happen automatically
whenever an SVG �le is added, removed, or changed. The grunt-contrib-
watch plugin is just for this. It watches the �les and/or directories you
tell it to watch in your projects, and runs grunt tasks when the �les
change in any way.

http://bkaprt.com/psvg/04-03/

We’ll tell it to watch our icons folder for SVG �les and run svgstore
when they change.

module.exports = function(grunt) {

 grunt.initConfig({

 svgstore: {

 default: {

 files: {

 "includes/defs.svg": ["svg/*.svg"]

 }

 }

 },

 watch: {

 svg: {

 files: ["icons/*"],

 tasks: ["svgstore"],

 options: {

 livereload: true

 }

 }

 }

 });

 grunt.loadNpmTasks("grunt-svgstore");

 grunt.loadNpmTasks("grunt-contrib-watch");

 grunt.registerTask("default", ["watch"]);

};

You’ll kick things o� by typing grunt watch into the command line at the
project’s root folder.

See the livereload: true option as part of the con�guration for that
watch task? That’s the icing on the cake here. If you have the LiveReload
browser extension installed and turned on, your browser will refresh
after the task is �nished (http://bkaprt.com/psvg/04-04/). That means you
can pop open an SVG in Illustrator, make edits, save it, and the browser
will automatically refresh, immediately showing you the changes right
on your site. That’s a dang delicious design work�ow if I’ve ever seen
one.

http://bkaprt.com/psvg/04-04/

ANOTHER APPROACH: GRUNTICON

I would be remiss not to mention Grunticon as a build tool for an icon
system (grunticon.com). Grunticon is a Grunt plugin just like grunt-
svgstore is, but it takes an entirely di�erent approach to SVG icons. It
still takes a folder full of .svg �les and combines them for you, but it
combines them into a stylesheet containing a bunch of class declarations
that set a background-image for the icon. Like this:

.icon-cloud-sync {

 background-image: url("data:image/svg+xml;charset=US-
ASCII,%3Csvg%20 …");

 background-repeat: no-repeat;

}

The SVG images are converted into a data URL and put directly into the
stylesheet. We’ll cover data URLs momentarily, but in a nutshell: a data
URL is literally the SVG itself, specially encoded and turned into a long
string right inside the URL. All the drawing information is right there; no
network request is required to go get anything else. In that sense, the
stylesheet is your sprite, because all the icons are combined into one
request and can be used on demand.

The Grunticon approach has a couple of advantages:

It handles fallbacks for you! (That deserved an exclamation
point.) Grunticon gives you everything you need, including a
fancy detection script, to serve icons that work everywhere. It
loads an entirely di�erent stylesheet with PNG versions, if
needed.

It’s inherently automated, forcing you to have a system in place
for icons.

It also has some drawbacks:

http://grunticon.com/

You only get some of the advantages of SVG, like scalability.

The elements aren’t in the DOM.

You can’t style elements with other CSS, meaning you’ll need
duplicates for even di�erently colored versions. The duplicates
don’t hurt �le size as much as you would think, since GZIP is
great at repetitive text, but it’s still harder to maintain.

Grunticon 2 mostly takes care of that disadvantage
(http://bkaprt.com/psvg/04-05/). You can use an attribute to tell it to inject
inline SVG:

<div class="icon-cart" data-grunticon-embed></div>

Grunticon will work some magic and inject the inline SVG of that icon
for you, as long as the browser supports it. It requires a little DOM
injection that you wouldn’t need if you started with inline SVG, but it
allows for variations and all the fancy powers inherent to inline SVG.

SVG icons at Lonely Planet

Here’s a real-world example for you (FIG 4.4). When he was working for
Lonely Planet, Ian Feather blogged about the virtues of switching from
an icon font to SVG icons (http://bkaprt.com/psvg/04-06/). His article
covers many of the problems inherent to icon fonts and the speci�c

strengths of SVG icons in an  evenhanded way, including

counterarguments where appropriate. Lonely Planet has a Grunticon-
powered system in place as I write.

A word on data URLs

Converting images into data URLs has long been a little performance
trick that can be used on websites. The idea is that all of the information

http://bkaprt.com/psvg/04-05/
http://bkaprt.com/psvg/04-06/

for the image is right there, so there’s no need for a network request. You
can do that with SVG, too. Here’s an example of an img:

<img src="data:image/svg+xml;charset=UTF-8,<svg ... > ... </svg>">

You could put the whole SVG syntax right in there. That would be weird,
though, since in that case you’d probably just use inline SVG. It makes
more sense in CSS:

.icon {

 url("data:image/svg+xml;charset=UTF-8, <svg ... > ... </svg>");

}

FIG 4.4: Icons at LonelyPlanet.com powered by Grunticon.

That will actually work in some browsers, but it’s invalid and rightfully
fails in compliant browsers. It’s not the data URL that poses a problem,
though—it’s the angle brackets. The trick is to URL-encode those angle
brackets and spaces (as Grunticon does) and it will work just �ne:

.icon {

 background: url("data:image/svg+xml; charset=UTF-8,%3Csvg%20
...");

}

http://lonelyplanet.com/

The most common way you tend to encounter data URLs, though, is in
the Base64 encoding:

.icon {

 background: url("data:image/svg+xml;base64,...");

}

Base64 is typically used as an encoding format because it’s safe. It uses
only sixty-four characters, none of which are angle brackets or any other
character that could be interpreted weirdly anywhere the data string
could be used. The result, though, is an encoded string that is larger than
the original. URL encoding does that, too, but because URL encoding
ends up changing fewer characters, it retains SVG’s fairly repetitive
syntax, and thus lends itself better to compression.

GULP

Gulp is another very popular task runner (http://bkaprt.com/psvg/04-07/).
Luckily for us, the svgstore plugin has a Gulp version as well
(http://bkaprt.com/psvg/04-08/). After you’ve gone through the easy
setup (follow the steps on the Gulp website), you’ll tell Gulp what to do
via gulp�le.js, in your project’s root folder.

Here’s an example that does exactly what our Grunt  example did:

var gulp = require("gulp");

var svgstore = require("gulp-svgstore");

gulp.task("svgstore", function () {

 return gulp

 .src("icons/*.svg")

 .pipe(svgstore({

 inlineSvg: true,

 fileName: "sprite.svg",

 prefix: "icon-"

 }))

 .pipe(gulp.dest("includes/"));

});

http://bkaprt.com/psvg/04-07/
http://bkaprt.com/psvg/04-08/

Just type gulp svgstore into the command line, and sprite.svg will be

created for you.

We can level up here as well. With Grunt, we added the watch task to
help with our work�ow. That’s possible with Gulp, too, but rather than
repeat ourselves, let’s take the opportunity to cover some other things a
build tool can be useful for.

Let’s say we’re working on a project and it comes up that we need a new
icon—a downward-pointing arrow in a circle, say. We head to the Noun
Project and �nd the perfect image. We name it arrow-down.svg. We drop
it into our icons folder, and let Gulp integrate it into our sprite. Beautiful.

The icons in this project are often set next to text within buttons, like
this:

<button>

 Download

 <svg class="icon">

 <use xlink:href="#icon-arrow-down" />

 </svg>

</button>

In our stylesheet, we set the text color for the button, and try to make
sure that the SVG picks up the proper fill color:

button {

 color: orange;

}

button svg {

 fill: currentColor;

}

That should work great. But when we look at the site, we see that our
icon is black (FIG. 4.5)! What the heck?!

We investigate our arrow-down.svg �le and �nd this:

<svg ... >

 <path fill="#000" d="..." />

</svg>

FIG 4.5: The icon is black, even though we’re trying to set the �ll color in CSS
(http://bkaprt.com/psvg/04-09/).

See the default fill attribute (#000) on the path? CSS can override that—
quite easily, in fact. A presentational attribute like this isn’t like an inline
style on HTML elements, which can only be overwritten by powerful
!important values. Presentational attributes on SVG elements are
overwritten by any CSS that targets the element directly. They have a
CSS speci�city value of zero, as it were.

If we did this in our CSS instead, it would have worked:

path {

 fill: currentColor;

}

But as we know, path is just one of many SVG elements. We don’t want
to get into the mess of naming them all in CSS. It’s much easier to set the
SVG element itself and let the fill cascade through the other elements.
And the fill will cascade through the other elements, unless there is a
fill attribute on them, like we just encountered.

The solution? Get rid of that dang fill attribute! To be fair, there
normally isn’t anything wrong with fill attributes; in fact, they allow
for multicolor icons, which is one of the strengths of using SVG for icon
systems. But in this case, we want it gone. Black is also the default fill
color, so it’s especially useless to us.

One way to strip that fill attribute is just to open the SVG �le and
remove it. Even Illustrator is smart enough to leave black-�lled shapes
without a fill attribute alone, so it won’t put it back in case you do a bit
of manual editing.

But we’re talking build tools here. Let’s make our fill-attribute stripping
part of our Gulp setup and let it happen automatically. That makes it
impossible to screw up, which is one of the things that’s so appealing
about build tools.

If you’ve ever worked with jQuery, you know that removing attributes
from elements is trivially easy. We could select all elements that have a
fill attribute and then remove it.

$("[fill]").removeAttr("fill");

If only we could do that with Gulp. Er, wait. We can! Cheerio is an
implementation of jQuery for the server and it has a Gulp plugin
(http://bkaprt.com/psvg/04-10/). We can run that exact line of code from
within Gulp, which I think is just so cool.

While we’re at it, let’s add in SVG optimization, too, so you can see how
easy it is for Gulp to “pipe” from one task to the next. Here’s everything
all together.

var cheerio = require("gulp-cheerio");

var svgmin = require("gulp-svgmin");

var svgstore = require("gulp-svgstore");

gulp.task("svgstore", function () {

 return gulp

http://bkaprt.com/psvg/04-10/

 .src("icons/*.svg")

 .pipe(svgmin())

 .pipe(svgstore({

 fileName: "sprite.svg",

 prefix: "icon-" }))

 .pipe(cheerio({

 run: function ($) {

 $("[fill]").removeAttr("fill");

 },

 parserOptions: { xmlMode: true }

 }))

 .pipe(gulp.dest("includes/"));

});

Group hug.

FIG 4.6: With the �ll attribute removed from the path, the color cascades in like we want it to
(http://bkaprt.com/psvg/04-11/).

OTHER BUILD TOOLS

Grunt and Gulp aren’t the only players in the build tools market. Other
projects let you do the same kind of thing but have slightly di�erent
approaches. Check out Broccoli (http://bkaprt.com/psvg/04-12/), Brunch
(brunch.io), or whatever else happens to be the build tool du jour. You
may prefer the way one works over another. As long as it saves you time
and e�ort: awesome.

http://bkaprt.com/psvg/04-12/
http://brunch.io/

WHAT ELSE CAN BUILD TOOLS DO FOR US?

Another process ripe for automation with a build tool is optimization—
as in reducing SVG images’ �le size without compromising their quality.
Imagine every vector point in an SVG �le having �ve levels of decimal
precision (e.g., rect x="12.83734" y="28.48573" width="100.23056"
height="50.42157"). That’s likely more precision—and a larger �le size—
than we need. Should we go in there and manually edit those values?
Heck no! A build tool can do that for us.

In fact, precision adjustments are among many things a build tool for
optimization can do for us. Let’s turn to that next.

I ’VE YET TO COME ACROSS any editing software capable of exporting
SVG that is perfectly optimized for use on the web. That’s a little strange,
since the primary destination of SVG is the web. But SVG software has
other things to worry about, too—like having compelling features for
designers, and ensuring that you can open the �les you created in the
exact same condition in which you left them.

Imagine a guide in Adobe Illustrator: you know, one of those pale blue
lines that help you position things on the canvas. There is no concept of
a guide in the SVG syntax, but you’d hate to lose those guides every time
you saved an SVG document in Illustrator. So, if you export an SVG from
Illustrator and leave the “Preserve Illustrator Editing Capabilities” box
checked, there will be some extra code in there de�ning where your
guides go. In fact, there will be a lot of extra code in there, and it’s so
proprietary that it may as well not be SVG at all. However, if you want to
make sure that the document opens in exactly the same condition you
left it in, leaving that box checked is a good idea.

A typical SVG work�ow involves doing the design work in what you
might think of as a master-editable version of an image, and then
exporting and processing an optimized version to use on the web.
Having a �le-naming convention (icon-menu-master.svg and icon-
menu.svg, say) or keeping the versions in separate folders is a good way
to stay organized as you work.

In short:

Always save a development version.

When saving a �le to use on the web, export a copy.

Let’s continue using Adobe Illustrator as an example. If we were working
on a new SVG master image and saving it for the �rst time, we would
select “Save As...”, choose “SVG” as the �le format, and then confront a
slew of options.

The options in FIG 5.1 are what I would recommend for saving a master
document. Remember: this �le isn’t intended for web use; it’s intended
to be a perfect copy, with all your designer conveniences left intact.

FIG 5.1: Detailed SVG Options screen in Adobe Illustrator.

When it’s time to export a copy you intend to use on the web, use File >
Export and save a copy under a di�erent name. You’ll get a far more
streamlined set of options (FIG 5.2).

I would recommend these options for most cases. This new copy will
have a far smaller �le size and is nearly ready for web use. It actually is
ready for web use; it’s just still not as well optimized as it could be. We’ll
look at some options for further optimization shortly, but �rst let’s
understand what SVG optimization actually does.

Below is some example SVG output from Illustrator. I should mention
that during the creation of this book, both Illustrator and Sketch made
huge strides in the quality of their SVG exports. The code shown here is
an older example of code exported from Illustrator. It still serves as a
good example for us, though, and there are lots of reasons you may
continue to run into code like this. For instance: you may have an older
version of Illustrator; this sort of code could appear in SVG you
download from the internet; or you may be using di�erent software that
exports to SVG in a similar way.

FIG 5.2: Export SVG Options from Adobe Illustrator.

Strikethrough text indicates code that is useless on the web and can
safely be deleted:

<?xml version="1.0" encoding="utf-8"?>

<!-- Generator: Adobe Illustrator 18.1.1, SVG Export Plug-In . SVG
Version: 6.00 Build 0) -->

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

<svg version="1.1" id="Layer_1" xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"

 viewBox="0 0 300 200" enable-background="new 0 0 300 200"
xml:space="preserve">

<rect x="45.7" y="49.3" fill="#FFFFFF" stroke="#000000" stroke-
miterlimit="10" width="36.44237" height="34.23123"/>

</svg>

Even more of that code could probably go. I’m sure Illustrator does
things the way it does for a reason, but that doesn’t mean we shouldn’t
try to trim the fat. Remember: the smaller the �le we serve, the faster it
will be—and fast is good!

We could clean all of this up by hand, but this is stu� that lends itself to
automation very well. And fortunately for us, there are some great
optimization tools already out there.

SVGO

The leading project in automated SVG optimization is SVGO
(http://bkaprt.com/psvg/05-01/). It’s a Node.js-based command line tool.
Meaning:

1. You have to have Node.js installed to use it—it only takes a
second to install (nodejs.org).

2. You use it by typing commands into the terminal. For instance,

svgo dog.svg dog.min.svg will optimize dog.svg into a new �le,

dog.min.svg (thus preserving the original). The terminal
command svgo -f . will optimize the entire folder of SVG images
you’re currently in.

If we ran SVGO on the example SVG �le we just showed, we would get
this:

<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 300 200"
enable-background="new 0 0 300 200"><path fill="#fff"
stroke="#000" stroke-miterlimit="10" d="M45.7 49.3h36.4v34.2h-
36.4z"/></svg>

http://bkaprt.com/psvg/05-01/
http://nodejs.org/

65.5 percent smaller! (SVGO calls it “65.5 percent pro�t,” which I love.)

INTEGRATING SVGO INTO GRUNT

Developer Sindre Sorhus has created a Grunt plugin for SVGO called
grunt-svgmin (http://bkaprt.com/psvg/05-02/). Remember how, when we
were using Grunt to build our icon system in the last chapter, any �le we
changed in our svg folder would instantly trigger the svgstore task and
build our SVG sprite? Now, let’s alter that to �rst optimize the SVG, and
then build it into a sprite.

Since we already have Grunt set up, we’ll run the following from the
command line at our project’s root folder to install the plugin:

npm install --save-dev grunt-svgmin

Next, we’ll con�gure svgmin to take our entire icons folder and optimize

all of the images it �nds there into an icons-optimized/ folder. Then we’ll

recon�gure svgstore to build the sprite from the icons-optimized/ folder.

Finally, we’ll alter our watch task to run svgmin �rst, then svgstore.
Here’s everything together:

module.exports = function(grunt) {

 grunt.initConfig({

 svgmin: {

 dist: {

 files: [{

 expand: true,

 cwd: "icons/",

 src: ["*.svg"],

 dest: "icons-optimized/"

 }]

 }

 },

 svgstore: {

 default: {

http://bkaprt.com/psvg/05-02/

 files: {

 "includes/defs.svg": ["icons-optimized/ *.svg"]

 }

 }

 },

 watch: {

 svg: {

 files: ["icons/*"],

 tasks: ["svgmin", "svgstore"],

 options: {

 livereload: true

 }

 }

 }

 });

 grunt.loadNpmTasks("grunt-svgstore");

 grunt.loadNpmTasks("grunt-svgmin");

 grunt.loadNpmTasks("grunt-contrib-watch");

 grunt.registerTask("default", ["watch"]);

};

As we did before, we’ll kick things o� by typing grunt watch into the
command line at the project’s root. Whenever any SVG is added, deleted,
or modi�ed, an optimized sprite will be generated.

An alternative would be to optimize the �nished sprite. That may be
more e�cient, but having a copy of each optimized icon might be useful,
too, so that you can inspect issues in an isolated way.

Another advantage to using SVGO through Grunt is that it provides easy
con�guration for turning SVGO plugins on and o�. We can pass an
options object in the con�guration, like this:

svgmin: {

 options: {

 plugins: [

 { removeViewBox: false }

]

 },

 dist: {

 The names of the plugins in the con�guration, like removeViewBox,

correspond to the plugin’s �le name: removeViewBox.js
(http://bkaprt.com/psvg/05-03/).

SVGO AS A DESKTOP APP

Here’s the deal with command-line tools like SVGO: I’m not afraid of
them. None of us should be afraid of them. Designers often get accused
of being afraid by people who feel more comfortable with the command
line.

Listen. If an alternative interface does the same thing but is more
comfortable for you and more in line with the rest of the work you’re
doing, why not use it? It’s not a cop-out; it’s a responsible choice. If it
works for you, do it.

Take SVGO GUI, for example (http://bkaprt.com/psvg/05-04/). It’s a
program that gives you a drag-and-drop window you can use to optimize
SVG. It just takes the �les you give it and runs them through SVGO in
the background for you.

SVGO-GUI has some limitations. For example, you can’t tell it to rename
the SVG as it optimizes it. You can’t see a before-and-after visual. You
can’t specify which options (plugins) you want it to use. It just performs
the default behavior of SVGO, and that’s it.

http://bkaprt.com/psvg/05-03/
http://bkaprt.com/psvg/05-04/

FIG 5.3: The simple interface from  SVGO-GUI. This is the entire app.

BE CAREFUL

For the most part, I’ve had good luck with SVGO. But I’ve seen cases
where what comes out is visually di�erent than what went in. This
seems to occur mostly with rather complicated SVG �les, perhaps of
dubious provenance. You know, like images downloaded from
FreeVectorsAndSkeezyAdvertisements.com.

The relatively �at shapes we mostly work with on the web typically pose
no problem. There are two main things to watch out for:

http://freevectorsandskeezyadvertisements.com/

Reducing decimal precision too much. Say you have a number
like 3.221432 in an SVG �le. Rounding that down to 3.2 will save
bytes, but will also reduce precision. Maybe you won’t notice the
di�erence; maybe you will. You’ll certainly notice it more the
smaller the viewBox and the larger the viewport. (See Chapter 3
for more on viewBox.) Imagine a shape drawn in a coordinate
system that goes from 0,0 to 100,100 (that’s what the viewBox
does). There are points like 31.875,42.366. The SVG is then drawn
in a 100-by-100-pixel space (that’s the viewport). Chopping o� a
few decimals probably won’t hurt (rounding up to 31.9,42.4, for
instance). Now imagine drawing the same graphic in a larger
viewport, say 2000 by 2000 pixels. That extra precision might be
more noticeable. Or say the same graphic is drawn in a viewbox of
0,0 10,10. Again, extra precision may be needed for it to look as
intended.

The removal of attributes. SVGO can be con�gured to do things
like remove all ID attributes. That might be useful; on the other
hand, if you do it by accident, it might remove a vital reference
for your CSS or JavaScript.

OTHER OPTIMIZATION TOOLS

SVGO is the most popular SVG optimization tool, I suspect, because it’s
open source on GitHub and built on the popular Node.js—and thus easy
to incorporate into other tools and build processes. But it’s not the only
tool on the block.

Scour is a Python-based SVG optimizer; its creator, Je� Schiller, calls it a
“scrubber” (http://bkaprt.com/psvg/05-05/) built speci�cally to clean up
the SVG output from early versions of Illustrator. Rather than plugins,
Scour has con�guration options that allow you to customize exactly
what you want it to do to your SVG. One detail of note from the original
project documentation:

http://bkaprt.com/psvg/05-05/

My current stats show a Median Reduction Factor of 48.19% and a Mean
Reduction Factor of 48.53% over 25 sample �les for version 0.19 of scour,
before GZIP compression.

I suspect that those numbers are similar for any SVG compression tool.
You’re looking at halving the size of SVG �les—and that’s before GZIP
compression, which is even more e�ective.

Another option is Peter Collingridge’s SVG Optimiser
(http://bkaprt.com/psvg/05-06/). It’s not an open-source tool; you have to
use it on the web. But he also o�ers a visual version of the tool, SVG
Editor, where you can select di�erent optimization options and see the
results in a preview area (http://bkaprt.com/psvg/05-07/). That’s nice,
because there are no surprises that way. What you see is what you get
(FIG 5.4).

http://bkaprt.com/psvg/05-06/
http://bkaprt.com/psvg/05-07/

FIG 5.4: The SVG Editor options and preview screen.

In the same vein, Jake Archibald created an in-browser app for SVGO
called SVGOMG (http://bkaprt.com/psvg/05-08/), which allows you to
toggle and alter the settings and see the output immediately (FIG 5.5).

http://bkaprt.com/psvg/05-08/

FIG 5.5: The SVGOMG options and preview screen.

HAND-OPTIMIZING SVG

While there are big gains to be made with optimization tools, you can be
your own optimization tool! (I just called you a tool. Sorry about that.)
You shouldn’t waste valuable time deleting metadata or trimming white
space, but there’s nothing wrong with spending time doing things that
only you can do.

For instance, say you have an SVG image of a cloud, but it’s actually
made up of a bunch of overlapping circles (FIG 5.6). Using the Path�nder

palette in Illustrator to combine those shapes into a single path would
likely result in a smaller �le size.

FIG 5.6: An example of manual simpli�cation of SVG: combining shapes with Illustrator’s Path�nder
tool.

Or, perhaps you have a shape that looks kinda grungy or roughed-up.
There will probably be a lot of points making up those non-straight
edges. Perhaps you can �nd places to remove some of those points
without a�ecting the design too much, saving �le size. Try playing with
Object > Path > Simplify to see if you can reduce some of those points
while keeping the image visually acceptable (FIG 5.7).

FIG 5.7: Manually simplifying paths in Adobe Illustrator with the Simplify options. Note that “Show
Original” is checked here, permitting the original and simpli�ed versions to be compared.

Now that we have optimization under our belts, let’s move on to a
subject near and dear to front-end developers’ hearts: sizing and scaling.
SVG is rather unique in how it does these things, so you’ll want to get a
handle on them.

YOU ’LL PROBABLY WANT to exert some sizing control over any graphic
you put on a website. Hey! You! Logo! You should be this size:

.logo {

 width: 220px;

 height: 80px;

}

 And so shall it be.

But if the element you are resizing happens to be svg, the result might
not be exactly what you expect. Sizing svg is a little more complicated
than sizing an img. I’m not saying this to scare you. It’s almost
complicated in a good way, because it gives you more control and opens
up some interesting possibilities.

Keep these two concepts in mind when you’re working with the size of
SVG images:

The viewport is simply the height and width of the element: the
visible area of the SVG image. It’s often set as width and height
attributes right on the SVG itself, or through CSS.

The viewBox is an attribute of svg that determines the coordinate
system and aspect ratio. The four values are x, y, width, and
height.

Say we’re working with some SVG like this:

<svg width="100" height="100" viewBox="0 0 100 100" ... >

<!-- alternatively: viewBox="0, 0 100, 100" -->

In this case, the viewport and viewBox are in perfect harmony (FIG 6.1).
The SVG will be drawn in the exact area it visually occupies.

FIG 6.1: Viewport and viewBox in perfect harmony. This happens when you apply no width or
height to the svg (either via attribute or CSS), or if you do, they match the aspect ratio of the
viewBox.

Now say we double the width and height, like this:

<svg width="200" height="200" viewBox="0 0 100 100" ... >

Will the svg just draw in a 100 by 100 space in the upper left side of the
200 by 200 element? Nope. Everything inside the svg will scale up
perfectly to be drawn in the new, larger space (FIG 6.2).

FIG 6.2: With the viewport enlarged and viewBox kept the same, the graphic scales up to �t the
viewport.

The square aspect ratio still matches perfectly. That’s why it’s not
particularly useful to think of the numbers anywhere in SVG as pixels,
because they aren’t pixels; they’re just numbers on an arbitrary
coordinate system.

What if the aspect ratios don’t match, though?

<svg width="300" height="75" viewBox="0 0 100 100" ... >

What happens now, by default, is that the SVG will draw itself as large as
it can, centered along the longest dimension (FIG 6.3).

FIG 6.3: The viewport is enlarged, but no longer matches the aspect ratio of the viewBox. So by
default, the image is drawn as large as possible without being cut o�, and centered on the long
dimension.

If you want to regain some control over this behavior, there’s an
attribute for the svg element that can help!

preserveAspectRatio

It looks like this:

<svg preserveAspectRatio="xMaxYMax" ... >

The x and Y parts of that value are followed by Min, Mid, or Max. The
reason SVG normally centers in the viewport is because it has a default
value of xMidYMid. If you change that to xMaxYMax, it tells the SVG: Make
sure you go horizontally as far to the right as you can, and vertically as far to
the bottom as you can. Then be as big as you can be without cutting o�.

FIG 6.4: Examples of preserveAspectRatio values with meet.

FIG 6.5: Examples of preserveAspectRatio values with slice.

The “without cutting o� ” part is another aspect of preserveAspectRatio.

The default value is xMidYMid meet—note the “meet.” You can replace
meet with slice to say instead: Fill the area entirely; cutting o� is okay.

There are nine possible alignment values combined with meet (FIG 6.4).

There are also nine possible alignment values combined with slice (FIG

6.5).

I made a testing tool for playing with this idea
(http://bkaprt.com/psvg/06-01/). Sara Soueidan also wrote an in-depth
article on this subject, where she makes an excellent observation relating
this idea to CSS (http://bkaprt.com/psvg/06-02/). The background-size
property has two keywords it can take: contain and cover. The contain
value means “make sure this entire image is viewable, even if you have
to shrink it,” which makes it just like meet. The cover value means “make
sure this covers the entire area, even if you have to cut parts o�,” which
makes it just like slice.

Even the alignment part of the value has a matching CSS counterpart:

background-position. The default background-position is 0 0, meaning

“top left.” That’s just like xMinyMin. If you were to change that to, say, 50%
100%, that would be like xMidyMax!

FIG 6.6 has some examples to make that connection a little clearer.

Remember: these aren’t interchangeable bits of code; they are just
conceptually related.

http://bkaprt.com/psvg/06-01/
http://bkaprt.com/psvg/06-02/

FIG 6.6: preserveAspectRatio values and the CSS properties they are similar to.

What if you want to throw aspect ratio out the window and have SVG
scale to the viewport, like a raster image would? Turn
preserveAspectRatio o� (FIG 6.7)!

<svg preserveAspectRatio="none" viewBox="0 0 100 100">

FIG 6.7: Example of preserveAspectRatio="none". Poor little buggers.

Amelia Bellamy-Royds wrote a comprehensive article on scaling SVG, in
which she covers things like the fact that svg can essentially contain
other svg with di�erent aspect ratios and behavior, so you can make
some parts of an image scale and others not, which is pretty cool and
unique to SVG (http://bkaprt.com/psvg/06-03/).

Approaches to artboard sizing

When you draw SVG in editing software, that software likely gives you
some kind of artboard to draw on. That’s not a technical SVG term; it’s
essentially a visual metaphor for viewBox.

Let’s say you’re working with a whole set of icons for a site. One
approach is to make all artboards hug each edge of the icon (FIG 6.8).

Here’s a quick trick to get that artboard cropping in Illustrator: select the
Artboard tool and then “Fit to Artwork Bounds” from the Presets menu
(FIG 6.9).

http://bkaprt.com/psvg/06-03/

FIG 6.8: Example of graphics in Adobe Illustrator cropped to their edges.

FIG 6.9: The menu option in Adobe Illustrator for resizing an artboard to the edges  of a graphic.

The big advantage to this technique is alignment (FIG 6.10). If you want to
align any edge of any of these icons to anything else, that’s easy to do.
There is no mysterious space you need to contend with, or tweaky
positional CSS.

.icon.nudge {

 position: relative;

 right: -2px; /* UGHCKKADKDKJ */

}

FIG 6.10: Icons aligning to edges without little bits of extra space you have to account for.

The big disadvantage to the cropping technique is relative sizing.
Imagine you take the practical step of sizing your icon’s width and
height, like this:

.icon {

 width: 1em;

 height: 1em;

}

A tall, skinny icon will shrink to �t in that space and potentially appear
awkwardly small. Or perhaps you’re trying to have an intentionally small
star shape as an icon, except the star has a squarish aspect ratio and thus
grows to �ll the space, appearing bigger than you want it to.

Here’s an example where two icons are sized identically as a square (FIG

6.11). The “expand” icon looks right at home, since it has a square aspect
ratio to match. But the “zap it” icon has a tall and narrow aspect ratio, so
it looks wimpy, like it’s �oating in the same square area.

FIG 6.11: Two icons sized in the same square space within a button. The top one �ts nicely, but the
bottom one �oats awkwardly in space.

The other approach here is to make consistently sized artboards (FIG 6.12).

FIG 6.12: Example of Illustrator graphics whose artboards are equal in size.

The advantages and disadvantages are exactly inverse here. You might
have alignment issues, because not all edges of the icons touch the edge
of the viewBox, which can be frustrating and might require tweaking
sometimes (FIG 6.13).

FIG 6.13: You can adjust icons’ relative sizing, but that can make alignment more di�cult.

You won’t have relative sizing issues, though, because the viewBox is the
same for all of them. If any particular icon looks too big or small, you
can adjust the artwork to bring it more in line with the set.

Since we’re learning about sizing, now is the perfect time to bring up
how SVG �ts into the �exible world of responsive design.

RESPONSIVE SVG

One of the hallmarks of responsive design is �uid layout. Content—
images included—is designed to �t its containers and the screen. If
responsive design is new to you, Ethan Marcotte’s seminal 2010 article
on the subject is a �ne place to start learning about it
(http://bkaprt.com/psvg/06-04/). SVG jibes extremely well with
responsive design:

Responsive designs are �exible. So is SVG! It renders well at any
size.

Responsive web design is a philosophy of caring about how a
website looks and behaves in any browser. Comparatively smaller

http://bkaprt.com/psvg/06-04/

SVG �les and performance-responsible tactics like an SVG icon
system can be a part of that.

But perhaps SVG’s most obvious connection to responsive design is the
possibility to react to CSS @media queries. Media queries move, hide, or
show elements with CSS based on things like the width or height of the
browser window. Those elements can be anything: sidebars, navigation,
ads, what have you. They can be SVG elements as well.

Imagine a logo that displays di�erent levels of detail depending on how
much space is available. That’s exactly what Joe Harrison was thinking
when he created a really neat demo using well-known logos
(http://bkaprt.com/psvg/06-05/, FIG 6.14).

FIG 6.14: Joe Harrison’s demo of the Disney logo at di�erent sizes.

http://bkaprt.com/psvg/06-05/

On the web, we’ve always had the ability to swap out images with other
ones. What’s appealing here is that we aren’t swapping out images; these
are all the same image. Or at least they could be. That signature “D” all by
itself could be the same exact “D” used in the most complex version of
the logo. Easy-cheesy in CSS.

Say we organize the SVG like so:

<svg class="disney-logo">

 <g class="magic-castle">

 <!-- paths, etc -->

 </g>

 <g class="walt">

 <!-- paths, etc -->

 </g>

 <g class="disney">

 <path class="d" />

 <!-- paths, etc -->

 </g>

</svg>

This, by the way, is pretty easy to do in Illustrator (FIG 6.15). The groups
and names you create there turn into IDs in the SVG output, and you can
use those IDs to do the styling. Personally, though, I prefer using classes
because they aren’t unique (so you don’t accidentally end up with
multiple identical IDs on the page) and because classes have a lower and
more manageable level of CSS speci�city. It’s easy enough to change IDs
to classes with a bit of �nd-and-replace maneuvering in a code editor.

FIG 6.15: Named layers and named shapes in Adobe Illustrator.

The corresponding CSS could be something like this:

@media (max-width: 1000px) {

 .magic-castle {

 display: none;

 }

}

@media (max-width: 800px) {

 .walt {

 display: none;

 }

}

@media (max-width: 600px) {

 .disney > *:not(.d) {

 display: none;

 }

}

Mind you, this is a contrived example of hiding parts of the images at
di�erent breakpoints, but that’s exactly how you would do it, along with
some likely sizing adjustments. Anything you can do with CSS is on the
table here. Perhaps some animation is appropriate at some breakpoints
but not at others. Perhaps you change stroke sizes to beef up or trim
down icons at di�erent sizes. Perhaps you change some �ll colors to
simplify adjacent shapes.

And things can get even fancier! Depending on how the SVG is used,
those media queries might actually be di�erent. SVG used as img, iframe,
or object has its own viewport. That means CSS embedded inside of it
reacts to media queries based on that, rather than the whole browser
window viewport. That means you would write, say, width-based media
queries based on the width of the image, not of the entire page.

That’s a very appealing idea: an element that arranges itself based on
attributes of itself, rather than the page. Am I this wide? Do this. Am I this
tall? Do this. That way, the SVG reacts to the situation it’s in rather than
the arbitrary document it happens to be part of.

As I write, this is referred to as “element queries” in CSS, but it doesn’t
actually exist yet in regular HTML/CSS. Once again, SVG is ahead of the
curve.

GRADUATION INTO ANIMATION

Speaking of things SVG is good at, let’s move into animation next.
Everything we have been building on so far has prepared us for this.
Hang on tight!

THERE ARE THREE distinctly di�erent ways to animate SVG: with CSS,
with SMIL, and with JavaScript. All of them are compelling and
appropriate in di�erent situations. SVG can accommodate anything from
minor little UI-embellishing animations to full-on immersive, interactive,
animated worlds.

ANIMATING SVG WITH CSS

Readers who have made it this far, I reckon, are well acquainted with
CSS and �nd transitions and @keyframe animations fairly straightforward
and comfortable.

Lucky for you, the same CSS techniques you use for animating and
transitioning HTML elements also work on inline SVG elements.

Let me give you an example. Say we’ve designed a display ad in SVG (FIG

7.1). We want to slowly animate a series of clouds horizontally across the

ad to add a little visual interest. To do this, we’ll duplicate some clouds
we already have in our original artwork (FIG 7.2).

<svg>

 <g class="clouds">

 <path d=" ... " />

 <path d=" ... " />

 <path d=" ... " />

 <path d=" ... " />

 </g>

</svg>

FIG 7.1: A sample advertisement designed as an SVG.

FIG 7.2: Adding an extra set of clouds. (Level up: use use for the second set!)

The idea is that we can animate the whole row of clouds so that the
duplicates are in the exact same position as the originals, but then
instantly jump back to their initial position. That way, the clouds can
in�nitely animate.

.clouds {

 animation: move-clouds 15s linear infinite;

}

@keyframes move-clouds {

 to {

 transform: translateX(-50%);

 }

}

That’s all there is to it! I’ve put up a demo on CodePen
(http://bkaprt.com/psvg/07-01/).

So under what circumstances would you choose CSS to animate SVG?

1. You’re doing most of your design work in CSS and want to keep it
there. You like the syntax of CSS.

http://bkaprt.com/psvg/07-01/

2. You’re using inline SVG so you can keep the CSS together with
your site’s main stylesheets.

3. The animation is fairly simple and CSS is able to animate the
things you need to animate (like positions, �lls, strokes).

4. You’re hoping to exploit the performance and browser
optimizations of CSS animations.

5. You want to put a block of style inside the SVG, hoping it works
in SVG as img or background-image. Mileage may vary. It works
today in Chrome, but not in Firefox. SMIL animation works in
both—that’s coming up next (http://bkaprt.com/psvg/07-02/)!

Why might you avoid CSS animations on SVG?

1. CSS can’t animate everything you might want to animate, like the
position of an individual point. CSS can animate properties but
not attributes. (Presentational attributes are properties.)

2. Your animation is fairly complex, and you need better tools than
@keyframes or transitions. For instance, you might want to start
one part of an animation when another ends, without having to
match up timing manually.

3. You’re experiencing buggy or broken behavior. Needless to say,
there is quite a bit of this. Internet Explorer doesn’t support CSS
animations on SVG elements at all. Firefox doesn’t support
percentage-based transform-origin, which is sometimes vital to
an animation. It’s…a complicated love story
(http://bkaprt.com/psvg/07-03/).

ANIMATING SVG WITH SMIL

SVG actually has its own syntax for animation built right into it. It’s a
part of SMIL (pronounced “smile”), which stands for Synchronized
Multimedia Integration Language (http://bkaprt.com/psvg/07-04/). The

http://bkaprt.com/psvg/07-02/
http://bkaprt.com/psvg/07-03/
http://bkaprt.com/psvg/07-04/

animate tag is our primary weapon here. While it can get complicated,
the syntax is pretty straightforward and declarative:

<circle r="30" cx="50" cy="50" fill="orange">

 <animate

 attributeName="cx"

 from="50"

 to="450"

 dur="1s"

 begin="click"

 fill="freeze" />

</circle>

In this example, an orange circle moves to the right by 400 when it’s
clicked, and then stays there.

FIG 7.3 shows the basic attributes of animate (http://bkaprt.com/psvg/07-
05/).

http://bkaprt.com/psvg/07-05/

FIG 7.3: Attributes of the animate tag.

Using just these attributes, we can build the sort of animation that is
outside the realm of possibility in CSS: shape-shifting. Imagine a form
that slowly changes its shape over time:

We see color-changing and position-changing e�ects in animations on
the web regularly, but shape-shifting is more unusual. Its relative scarcity
stems from the fact that CSS just doesn’t o�er access to this visual
attribute. But SMIL can do it!

Shapes are drawn from data in attributes on the shape elements
themselves, for instance the d in path d="". In the star-to-check-mark
example, the shape element is a polygon and the attribute is points, as in
polygon points="". So to animate the the shape, we animate the points
attribute.

<polygon points=" ... shape 1 points ... ">

 <animate

 id="animate-to-check"

 attributeName="points"

 dur="500ms"

 to=" ... shape 2 points ... " />

</polygon>

FIG 7.4: Example of a star morphing into a check mark.

We can trigger that animation with SMIL events, like we did in the
orange circle example, but we can also trigger animations like this with
JavaScript.

var ani = document.getElementById("animation-to-check");

ani.beginElement();

Why use SMIL at all? Here are the main reasons why you might reach
for it:

You can use it to animate things that CSS can’t, like the shape of
elements or the movement of elements along a path.

You’re working in the SVG directly and you like working there.
Or you like the declarative syntax in general.

The animation may work even when using SVG as img or
background-image, where CSS or JavaScript will not.

You want interactive features (hovers, clicks, etc.) without using
JavaScript.

You need timings that depend on other timings—Start this
animation when this other one ends, plus a second—without having
to keep everything in sync manually.

Are there reasons not to use SMIL? Sure:

Blink has deprecated SMIL (http://bkaprt.com/psvg/07-06/), which
means that, at some point, SMIL animations will likely stop
working in Chrome and Opera. Microsoft browsers have never
supported, and likely will never support, SMIL—and that’s a big
strike against it (http://bkaprt.com/psvg/07-07/).

It’s very repetitive. A single animate can only animate one
element. Even if you want a second element to do the exact same
animation, you’ll need to duplicate it. GZIP is good at
compressing repetitive code, so this poses no serious �le-size

concerns—but still, awkward.

Some great articles by Sarah Drasner can help us out here. In “Weighing
SVG Animation Techniques (with Benchmarks)”, she gathers some
standard measures for comparing the performance of a number of SVG
animation techniques (http://bkaprt.com/psvg/07-08/). The story still isn’t
perfectly clear—CSS and SMIL tend to perform the best generally, but
you need to take care to ensure that you’re getting hardware
acceleration. Plus, there is evidence that JavaScript animation can
outperform them all in some cases (http://bkaprt.com/psvg/07-09/). Sarah
also wrote a guide detailing alternatives to SMIL features
(http://bkaprt.com/psvg/07-10/).

Embedded animations

http://bkaprt.com/psvg/07-06/
http://bkaprt.com/psvg/07-07/
http://bkaprt.com/psvg/07-08/
http://bkaprt.com/psvg/07-09/
http://bkaprt.com/psvg/07-10/

When you use SMIL, the animation code is embedded into the SVG
syntax itself. The same is true if you use CSS to animate the SVG and put
that CSS in a style block within the SVG code. When this is the case,
depending on the browser, that animation might work even if you use
the SVG as an img or background-image.

People often reach for GIFs when they need to show animation in an
img, but GIFs can have large �le sizes and (therefore) create a serious
performance burden. Animation embedded into SVG and used an img is
an attractive alternative, but unfortunately it’s not supported nearly as
widely as GIF’s (for example, it doesn’t work in Firefox).

This is not a comprehensive look at SMIL. There are many more
attributes you can apply if you want to do more speci�c things. For
instance, you can run an animation multiple times (e.g.,
repeatCount="3"), animate the numbers in speci�c blocks (e.g., by="10"),
or control whether or not the animation is allowed to restart and when
(e.g., restart="whenNotActive").

There are even other animation elements, like animateTransform, that

allow you to animate the transform attribute on SVG elements. You can’t
do that with animate alone (http://bkaprt.com/psvg/07-11/)—for instance,
this doesn’t work:

<animate

 attributeName="transform"

 from="rotate(0 60 70)"

 to="rotate(360 60 70)"

 dur="10s" />

Instead, you need to do this:

<animateTransform

 attributeName="transform"

http://bkaprt.com/psvg/07-11/

 type="rotate"

 from="0 60 70"

 to="360 60 70"

 dur="10s" />

Another SMIL element opens up an interesting animation possibility:
animating an element along a path. Imagine a little paper airplane
�oating across the screen, or a ball rolling down a hill. animateMotion is
our friend here. It can animate any other SVG element along a path (but
only a path; other basic shapes don’t work). Here’s a very simple
example of animating an element in a circle (http://bkaprt.com/psvg/07-
12/):

<svg viewBox="0,0 10,10" width="200px" height="200px">

 <path

 id="theMotionPath"

 fill="none"

 stroke="lightgrey"

 stroke-width="0.25"

 d="

 M 5 5

 m -4, 0

 a 4,4 0 1,0 8,0

 a 4,4 0 1,0 -8,0

 "

 />

 <circle r="1" fill="red">

 <animateMotion dur="5s" repeatCount="indefinite">

 <mpath xlink:href="#theMotionPath" />

 </animateMotion>

 </circle>

</svg>

That may not look tremendously simple at �rst blush, but remember that
you probably won’t be crafting that path by hand; you’ll just be
referencing it by ID.

http://bkaprt.com/psvg/07-12/

This has long been nearly impossible in CSS. The most you could do was
animate position values or get very tricky with transforms (see Lea
Verou’s post on this topic, for example [http://bkaprt.com/psvg/07-13/]).
But new CSS properties can help: motion-path: path() and motion-
offset. Blink already supports motion paths (http://bkaprt.com/psvg/07-
14/), perhaps motivated by the SMIL deprecation. You can take the path
data and use it directly, which makes moving a SMIL path animation to
CSS quite easy! Here’s how:

.move-me {

 motion-offset: 0

 motion-path: path("M 5 5 m -4, 0 a 4,4 0 1,0 8, 0 a 4,4 0 1,0
-8,0");

}

.move-me:hover {

 motion-offset: 100%;

}

For a more comprehensive look at SMIL animations, check out Sara
Soueidan’s “Guide to SVG Animations” and the spec
(http://bkaprt.com/psvg/07-15/, http://bkaprt.com/psvg/07-16/).

ANIMATING PATHS

There’s a little trick we can do with the stroke on SVG shapes: we can
make it look as if the shape is drawing itself. It’s clever as heck. A blog
post by Jake Archibald �rst made me aware of the trick
(http://bkaprt.com/psvg/07-17/).

Here’s how it works (FIG 7.5, http://bkaprt.com/psvg/07-18/):

1. Imagine you make an SVG shape with a stroke. You set strokes
with attributes like these: stroke="black" and stroke-width="2".

2. Strokes can be dashed, with an attribute like this: stroke-
dasharray="5, 5", meaning “a dash �ve long followed by a space
�ve long.”

http://bkaprt.com/psvg/07-13/
http://bkaprt.com/psvg/07-14/
http://bkaprt.com/psvg/07-15/
http://bkaprt.com/psvg/07-16/
http://bkaprt.com/psvg/07-17/
http://bkaprt.com/psvg/07-18/

3. The dashes can be longer, as in stroke-dasharray="30, 5". In fact,
they can be any length.

4. You can also o�set the stroke, which moves the starting position
of those dashes, with an attribute like this: stroke-
dashoffset="30".

5. Imagine a dash so long that it covers the entire shape, and a space
after it that is equally long. You could o�set the stroke so that it
looks like it’s entirely covering the shape, or o�set it so that it
looks like there is no stroke at all.

6. Now imagine an animation that animates from fully o�set back to
0. The shape will “draw itself.”

FIG 7.5: Animating paths makes it look as if a shape is drawing itself.

You can do all that in CSS, but with a dash of JavaScript, it becomes a
little more foolproof. path elements have a property you can access via
JavaScript that tells you exactly how long the element is:

var path = document.querySelector(".path");

var length = path.getTotalLength();

The resulting length number is exactly what the dash length and stroke
o�set need to be to do this trick.

ANIMATING SVG WITH JAVASCRIPT

JavaScript can animate SVG because JavaScript is all-powerful. In other
words, JavaScript can manipulate things in the DOM. For instance, you
can select an element with JavaScript and change the class name on it.
JavaScript 101. A class name is just an attribute on an element. A circle’s
cx is just an attribute on an element, too. It controls the position of the
center of the circle on the x-axis. JavaScript can change that.

JavaScript also has the ability to run a loop. Let’s say we increased the cx
attribute by 10 every 10 milliseconds:

var circle = document.getElementById("orange-circle"), positionX =
0;

var interval = setInterval(function() {

 positionX += 10;

 if (positionX > 500) {

 positionX = 0;

 }

 circle.setAttribute("cx", positionX);

}, 20);

That’s animation (http://bkaprt.com/psvg/07-19/)! That orange circle will
animate from left to right over and over and over again.

It’s not particularly e�cient, though. For starters, setInterval isn’t ideal
for animations because the browser can’t really optimize it. It can’t, for
example, stop the animation when it’s not visible, or make it as smooth
as possible.

http://bkaprt.com/psvg/07-19/

The best approach to animation looping in JavaScript is
requestAnimationFrame (http://bkaprt.com/psvg/07-20/). At its most basic:

function doAnimation() {

 // Do animation things

 requestAnimationFrame(doAnimation);

}

requestAnimationFrame(doAnimation);

That loop will run as close to 60 frames per second (FPS) as it can. The idea
is that 60 FPS is what is required to make an animation appear very
smooth to our eyes. That’s great; it just means that that loop runs very
fast, and that it’s up to you to �gure out the timing and duration.

There’s an even better way to proceed here: use a JavaScript library built
for animation. I wanted to cover the attribute-altering and looping
concepts �rst, because that’s what any library is actually doing under the
hood. But these concepts o�er us ways to declare animations that are
easier to write and read, give us powerful options, and do the hard work
behind the scenes for us.

Before we look at some examples, let’s consider why we would want to
use JavaScript to animate SVG:

You’re already working primarily in JavaScript and like to keep
your work there. Or you just like the syntax of JavaScript.

You’re working with a data source in JavaScript.

You need JavaScript to do math, loops, logic, or other
programmery things.

You need JavaScript to normalize some cross-browser bugs for
you, like the known bugs with CSS transforms on SVG
(http://bkaprt.com/psvg/07-21/).

And why would you avoid JavaScript here?

Libraries add additional, signi�cant weight to the page.

http://bkaprt.com/psvg/07-20/
http://bkaprt.com/psvg/07-21/

JavaScript only works when it is available in the browser and
loads properly.

It only works on inline SVG or in contexts where external
references are allowed, like object and iframe.

Snap.svg

Snap.svg is heralded as the “jQuery of SVG” (http://bkaprt.com/psvg/07-
21/). It can be used to create and manipulate SVG, as well as animate it.
To use it, you’ll need to add the script to your page before you write any
Snap.svg-speci�c JavaScript.

<script src="snap.svg.js"></script>

It has no other dependencies, so after you add it, you’re ready to use it
(http://bkaprt.com/psvg/07-22/).

<script>

 // create a new <svg> on the page

 // or use Snap("#existing-svg")

 var s = Snap(800, 600);

 // Draw a <circle>

 // Those attributes are cx, cy, and r

 var bigCircle = s.circle(150, 150, 100);

 // Manipulate the fill attribute to be "green"

 bigCircle.attr({

 fill: "green"

 });

 // Animate the radius and fill over one second

 bigCircle.animate({

 r: 50,

 fill: "lightgreen"

 }, 1000);

</script>

http://bkaprt.com/psvg/07-21/
http://bkaprt.com/psvg/07-22/

And that’s only a drop in the bucket of Snap.svg’s capabilities. Just as
jQuery can help with anything DOM-related, like cloning elements,
manipulating attributes, or attaching event handlers, so, too, can
Snap.svg. Except that Snap.svg will do everything correctly in SVG,
while jQuery may not. For instance, you’d think you could use jQuery’s
.addClass() method on an SVG element. Unfortunately, that will fail—
the workaround is .attr("class", "foo")—but Snap.svg’s identical
.addClass() will work.

Read the Snap.svg documentation for a full look at what it can do; also,
check out Pens tagged “snapsvg” on CodePen for a bunch of examples
(http://bkaprt.com/psvg/07-23/, http://bkaprt.com/psvg/07-24/).

Greensock

Greensock is a robust and performant library focused on animation
(greensock.com). It wasn’t developed speci�cally for SVG, but it works
great with it. Google even recommends Greensock to those looking for a
dedicated animation library (http://bkaprt.com/psvg/07-25/).

Say you have existing SVG like this:

<svg width="260" height="200" viewBox="0 0 260 200">

 <rect id="rect" x="20" y="60" width="220" height="80"
fill="#91e600" />

</svg>

Let’s target that rect, turn it in a circle, and halve the size of it over �ve
seconds:

TweenMax.to("#rect", 5, {

 rotation: 360,

 transformOrigin: "50% 50%",

 scale: 0.5

});

http://bkaprt.com/psvg/07-23/
http://bkaprt.com/psvg/07-24/
https://greensock.com/
http://bkaprt.com/psvg/07-25/

This is a particularly pertinent example, because if you try to do this
exact same animation in CSS, you’ll run into a lot of trouble. Here’s why:

IE and Opera won’t do CSS transforms on SVG elements at all, let
alone animate them.

Firefox won’t honor the percentage-based transformOrigin we’ve
set there (nor will it do keywords).

Safari will break the animation if the page is zoomed in either
direction, not scaling the elements in sync with each other.

Greensock, beyond providing a nice API for animations as well as
executing them smoothly, normalizes all of these bugs across browsers
so the animation will work as expected. Pretty nice!

Using a JavaScript library for animation doesn’t mean you’re neglecting
performance. In fact, the opposite may be true. In some cases, JavaScript
will yield better performance. In a video, Greensock’s Jack Doyle tests
pure CSS against Greensock in some fairly intense animations,
con�rming that performance is a tricky thing; lots of factors ultimately
a�ect the viewing and interacting experience (http://bkaprt.com/psvg/07-
26/). Things like memory usage, painting area, and time, as well as the
the e�ect on the frames per second a page can display, all impact
performance.

Greensock’s own CodePen account has loads of examples and demos on
how to use it (http://bkaprt.com/psvg/07-27/).

REFLECTING ON ANIMATION

Congratulations—you’ve just made it through a whole lot of SVG
animation information. There is much to love about animating SVG:

You can easily jump into it using what you already know about
animating in CSS.

http://bkaprt.com/psvg/07-26/
http://bkaprt.com/psvg/07-27/

You can control and animate more design features (like strokes)
than you can with HTML elements.

You can really get serious about SVG animation, creating whole
experiences, interactive spaces, and complex timelines.

Lastly, you can port that knowledge back to animating HTML
when needed.

The fact that SVG goes so well with HTML, CSS, and  JavaScript is a good

reason for SVG to be in every front-end developer’s toolbox. And SVG
has design features that we haven’t even touched on yet that cross the
boundaries between these languages. Let’s dig into some of those
features next.

BEYOND DRAWING and animating shapes, SVG has several features that
can alter how the image ends up looking. We’ll review four of them.

FILTERS

You may already know that CSS has �lters. For instance:

.grayscale-me {

 filter: grayscale(100%);

}

SVG probably looks at those and is like: “Cute, kid.” SVG �lters are the
original gangsters of �lters. A similar �lter de�ned in SVG would look
like this:

<filter id="grayscale">

 <feColorMatrix type="saturate" values="0" />

</filter>

You can then apply that via CSS like so:

.grayscale-me {

 filter: url("#grayscale"); /* space separate multiple filters
*/

 /* or in an external file */

 filter: url("filters.svg#grayscale");

 /* you could even use a data URI here! */

}

Or you can apply it to an SVG element, like this:

<g filter="url(#grayscale)">

 <!-- grayscale all the stuff in here -->

</g>

With a �lter like that available, it would be easy to design an interaction
where, for instance, there is a grid of Adorable Avatars in grayscale; the
one being hovered over or tapped goes back to full color, as shown in FIG

8.1 (http://bkaprt.com/psvg/08-01/).

img {

 filter: url("#grayscale");

}

img:hover, img:focus {

 filter: none;

}

While CSS �lters may be a bit easier to use, SVG �lters can do anything
that CSS �lters can, and with deeper browser support.

http://bkaprt.com/psvg/08-01/

FIG 8.1: A row of avatars with a grayscale SVG �lter applied. The second, on being hovered over or
tapped, reverts to full color.

The practical stu�, like blur, is all there in SVG �lters (FIG 8.2):

<filter id="blur">

 <feGaussianBlur in="SourceGraphic" stdDeviation="3" y="-"/>

</filter>

FIG 8.2: A row of avatars with a blur SVG �lter applied. The �lter gets stripped from the second
image on hover or tap.

But things can quickly get complex. Here’s the “color matrix” required
for converting colors to sepia tone (FIG 8.3):

<filter id="sepia">

 <feColorMatrix type="matrix" values=".343 .669 .119 0 0 .249
.626 .130 0 0 .172 .334 .111 0 0 .000 .000 .000 1 0" />

</filter>

FIG 8.3: A row of avatars with a sepia SVG �lter applied.

Or something really weird and otherworldly, like adding “turbulence”
(FIG 8.4):

<filter id="turbulence" >

 <feTurbulence type="fractalNoise" baseFrequency="0.015"
numOctaves="2" result="turbulence_3" data-filterId="3" />

 <feDisplacementMap xChannelSelector="R" yChannelSelector="G"
in="SourceGraphic" in2="turbulence_3" scale="65" />

</filter>

FIG 8.4: Okay, I think these little fellers have had enough.

And we’re just getting our toes wet. Note how the turbulence �lter
included two �lter operations. Filters can include any number of
operations, each a�ecting the last. As Chris Lilley told me in an email:
“In some ways [�lters] are more like a �ow-based programming language
than markup.”

Lucas Bebber built some beautiful “Gooey Menus” with SVG �lters that
are fun to explore (http://bkaprt.com/psvg/08-02/). They combine
blurring and deblurring and shadowing and compositing and all kinds of
fancy.

There is practically no limit to what SVG �lters can do to graphics. If this
appeals to you, I’d encourage you to check out the spec
(http://bkaprt.com/psvg/08-03/).

PATTERNS

Patterns are repeated designs. Imagine a polka-dot dress or those baggy
chef pants with all the little di�erent kinds of peppers on them that you
used to wear in middle school and oh god the loneliness. Nobody laid
out every single polka dot or pepper; they were created from patterned
fabric.

Here are two reasons SVG patterns are cool:

They make quick work of designs that would otherwise be too
complex (too many points; too big a �le).

They are made from other chunks of SVG!

Imagine a repeating site background (FIG 8.5). Very nice, you think to
yourself, but can I use SVG for that? It seems like an awful lot of vector
points; the �le size is probably too big to be practical. That would be an
understandable thought, but this �le is only about one kilobyte. That’s
because we made that complex-looking pattern from one tiny little shape
(FIG 8.6).

http://bkaprt.com/psvg/08-02/
http://bkaprt.com/psvg/08-03/

FIG 8.5: That pattern in the background sure looks complex.

FIG 8.6: This small chevron shape can become the basis of a pattern.

The pattern element provides the magic here. It’s an element designed to
be used as a �ll that will repeat over and over in a grid, like CSS
background-images can. A pattern is essentially a rect. It takes the same

attributes: x, y, width, and height. The di�erence is that it doesn’t render
all by itself, just like the symbol element we used back in Chapter 3! You
give it an ID so other elements can reference it.

Any SVG element that does render can use the pattern as a fill. Here,
let’s �ll the entire SVG area with circles:

<svg width="100%" height="100%">

 <!-- this rectangular area won’t render,

 but anything drawn inside of it can

 be used to fill other shapes -->

 <pattern id="pattern-circles" x="0" y="0" width="20"
height="20" patternUnits="userSpaceOnUse">

 <circle cx="10" cy="10" r="10" fill= "#f06d06" />

 </pattern>

 <rect x="0" y="0" width="100%" height="100%"
fill="url(#pattern-circles)" />

</svg>

Note the patternUnits="userSpaceOnUse" on the pattern element. That
ensures that both the pattern and the element using the pattern exist in
the same coordinate system (x, y, width, and height). In my experience,
this prevents a boatload of confusion. If you ever �nd yourself in a
situation where you want a pattern to have its own new coordinate
system, look into the objectBoundingBox value for the patternUnits and
patternContentUnits attributes.

In FIG 8.7, the circle repeats perfectly, just touching the next circle in the
pattern. That’s because the width of the circle (radius × 2) and width of
the pattern rectangle are exactly the same. And the circle is positioned in
the middle of that pattern rectangle.

FIG 8.7: A demo in which a single circle makes up a simple pattern (http://bkaprt.com/psvg/08-
04/).

What if we move the center of the circle to 0,0? Then we’ll only see the
bottom right corner of the circle, because that’s the only part of it that’s
visible within the pattern rectangle. Anything outside of that area is cut
o� (FIG 8.8).

FIG 8.8: Moving the position of our circle results in a very di�erent look for our pattern.

Or say we increase the radius of the circle beyond the edges, and
position it centered at the top. Our pattern might then resemble curtains
(or waves) (FIG 8.9).

FIG 8.9: Changing the size of our circle results in yet another di�erent look for our pattern.

I’ve set up a playground for playing around with these pattern attributes

(http://bkaprt.com/psvg/08-05/).

Illustrator has a pretty good tool for working with patterns, and
thankfully it also saves to SVG well! If you go to Object > Pattern > Make,
the Pattern Options panel will open, and the interface will shift into
pattern-editing mode (FIG 8.10).

http://bkaprt.com/psvg/08-05/

FIG 8.10: Adobe Illustrator’s Pattern Options are quite good.

First you make the pattern (click Done at the top of the screen when you
have it how you want it); then Illustrator makes a new “swatch” for this
pattern under the Swatches panel. Now you can create or select other
elements and apply this pattern to them, just like you would in the SVG
syntax with fill="url(#pattern)".

What is especially useful about working with patterns in Illustrator is
that we aren’t limited to the repeating rectangles. You can de�ne a
pattern with o�set rectangles (like a brick wall) or a grid of hexagons.
This opens up some pretty cool pattern opportunities (read: almost any
design set in repeating hexagons looks cool). SVG still only supports
repeating rectangles through pattern, but that’s precisely what is
wonderful about Illustrator: it does the hard work for you of converting
that pattern to one that can be represented as a rectangular tile, such that
it can be drawn with pattern.

You probably know you can create repeating patterns in CSS as well. In
fact, the default is background-repeat: repeat. You can simply create a
rectangular bit of SVG and repeat it that way, which is a pretty great
option if you’re already using the pattern as a background. Otherwise, in
order to set other content on top of the pattern set in inline SVG, you’d
have to position it into place on top using position: absolute;—a rather
blunt tool for the job.

If you’d like to play around more with pattern, SVGeneration is a pretty
neat site for that, providing patterns that make use of features unique to
SVG, as well as a UI to customize them and show you the code
(svgeneration.com).

http://www.svgeneration.com/

FIG 8.11: SVGeneration is a playground for interesting SVG patterns.

CLIPPING AND MASKING

Clipping and masking are related concepts because they are both capable
of hiding parts of an image. But the distinction between them can be
confusing, so let’s clear that up right now:

Clipping is created from vector paths. Anything outside the path
is hidden; anything inside is shown.

Masking is created from images. Black parts of the image mask
hide; white parts show through. Shades of gray force partial
transparency—imagine a black-to-white gradient over an image
that “fades out” the image.

Clipping is done with the clipPath element. Any SVG elements you put
inside of the element don’t render all by themselves (again, like symbol),
but can be applied to other elements to clip them.

Let’s say we have a polygon of a star shape (FIG 8.12). And we also have a
bunch of other fun SVG shapes laid out (FIG 8.13). We can use the star
shape as a clipping path for the circle shapes (FIG 8.14):

<svg viewBox="0 0 1200 1000">

 <defs>

 <clipPath id="clip-star">

 <polygon points="..." />

 </clipPath>

 <defs>

 <g clip-path="url(#clip-star)">

 <circle ... />

 <!-- all those cool circles -->

 </g>

</svg>

FIG 8.12: A star polygon drawn in Adobe Illustrator.

FIG 8.13: A bunch of gradient-�lled circles drawn in Adobe Illustrator.

FIG 8.14: The star shape being used as a clipPath for the circles.

In Illustrator, you can apply clipping paths like this by selecting multiple
elements, making sure the topmost element is the clipping path you
want to apply, and going to Object > Clipping Mask > Make. Note that
Illustrator calls it a “mask” here, but it’s actually a clipping path.

A clipping path is black and white in the sense that the part of the image
being clipped is either hidden entirely or shown entirely. A mask is a bit
di�erent. A mask covers the entire area with an image of its own. Where
that masking image is black, it hides the image below (and prevents user

interaction as well, a sort of pointer-events: none;). Where that masking
image is white, it reveals the image below. Any grays in that masking
image partially reveal the image, depending on their value.

Perhaps the easiest way to make this distinction is to picture a white-to-
black gradient (FIG 8.15).This gradient can be created in SVG and applied to
a rect, and then put inside a mask element. If we apply that mask to the
same fun circles we were working with before, we get some nice results
(FIG 8.16).

FIG 8.15: A white-to-black gradient applied to a rect.

FIG 8.16: Our gradient rect made into a mask and applied to our circles.

The code looks like this:

<svg viewBox="0 0 1200 1000">

 <mask maskUnits="userSpaceOnUse" id="fade">

 <linearGradient id="gradient" x1="0" y1="0" x2="0"
y2="100%">

 <stop offset="0" style="stop-color: #FFFFFF" />

 <stop offset="1" style="stop-color: #000000" />

 </linearGradient>

 <rect fill="url(#gradient)" width="100%" height="100%" />

 </mask>

 <g mask="url(#fade)">

 <circle ... />

 <!-- all those cool circles -->

 </g>

</svg>

FIG 8.17 shows a photographic image applied as a mask, yielding a pretty
wild outcome. A mask lets you do the same thing a clipping path does:
you can �ll the shapes you make with black or white as needed, and you
can reverse the mask by simply reversing the colors. But masks are a bit
more �exible—unlike clipping paths, masks can do partial masking.

FIG 8.17: A photograph applied as a luminance mask to SVG shapes.

Masks have another distinctive feature: they have two di�erent types.
We already looked at the default, mask-type="luminance", which is based
on color. There’s another one: mask-type="alpha". Alpha masks don’t
take color into account, only the alpha channel itself. For instance, if you
use an SVG element as part of a mask with no �ll at all, that’s considered

fully alpha transparent and will show the image beneath
(http://bkaprt.com/psvg/08-06/).

You can use raster images as masks if you want (FIG 8.18):

<mask maskUnits="userSpaceOnUse" id="fade" mask-type="alpha">

 <image y="200" width="100%" height="500" xlink:href="alpha-
mask.png" />

</mask>

http://bkaprt.com/psvg/08-06/

FIG 8.18: Example of a raster image with some fully opaque pixels, some fully transparent pixels,
and some in-between pixels.

Peter Hrynkow has a very clever technique utilizing SVG masks
(http://bkaprt.com/psvg/08-07/). Say you want a photographic image, and
JPG is the best choice in terms of �le size and quality. But you also want
alpha transparency around the edges of the subject in the photograph.

http://bkaprt.com/psvg/08-07/

You could save from Photoshop as a “PNG-24,” but then the �le size will
be a lot bigger than it would be with JPG.

FIG 8.19: The raster image applied as an alpha mask. Note how the mask hides the areas where the
raster image was alpha transparent. This is perhaps the opposite of what you might expect, but the
end result is that the element is as transparent as the mask.

Hrynkow’s solution is to use two images. The photograph, and a black-
and-white image as the mask. Then apply that mask in inline SVG!

<svg viewBox="0 0 560 1388">

 <defs>

 <mask id="canTopMask">

 <image width="560" height="1388" xlink:href="can-top-
alpha.png"></image>

 </mask>

 </defs>

 <image mask="url(#canTopMask)" id="canTop" width="560"
height="1388" xlink:href= "can-top.jpg"></image>

</svg>

FIG 8.20: Example of a JPG image being used within SVG, so it can be masked to have alpha
transparency.

BEYOND BASIC FILLS AND STROKES

Fills can be, and often are, solid colors: fill="#F06D06",
fill="rgba(255,0,0,0.6);", and the like. But a �ll can also be a gradient,
much like how in CSS a background can have a solid color or a gradient
as part of background-image. Using the same syntax you would use if you
were applying a pattern �ll, you reference the ID of where you have
de�ned the gradient:

<path fill="url(#id)" ... >

Here’s the de�nition for a lovely rainbow gradient from a Pen by yoksel
(http://bkaprt.com/psvg/08-08/):

<linearGradient id="MyGradient" x1="0" y1="0" x2="100%" y2="0%">

 <stop offset="0%" stop-color="crimson" />

 <stop offset="10%" stop-color="purple" />

 <stop offset="10%" stop-color="red" />

 <stop offset="20%" stop-color="crimson" />

 <stop offset="20%" stop-color="orangered" />

 <stop offset="30%" stop-color="red" />

 <stop offset="30%" stop-color="orange" />

 <stop offset="40%" stop-color="orangered" />

 <stop offset="40%" stop-color="gold" />

 <stop offset="50%" stop-color="orange" />

 <stop offset="50%" stop-color="yellowgreen" />

 <stop offset="60%" stop-color="gold" />

 <stop offset="60%" stop-color="green" />

 <stop offset="70%" stop-color="yellowgreen" />

 <stop offset="70%" stop-color="steelblue" />

 <stop offset="80%" stop-color="skyblue" />

 <stop offset="80%" stop-color="mediumpurple" />

 <stop offset="90%" stop-color="steelblue" />

 <stop offset="90%" stop-color="purple" />

 <stop offset="100%" stop-color="mediumpurple" />

</linearGradient>

We can apply that to a path or any other basic shape, but we can also
apply it to text (FIG 8.21). It produces that cool knockout e�ect that is
di�cult to pull o� cross-browser with CSS.

http://bkaprt.com/psvg/08-08/

FIG 8.21: SVG text with a linearGradient as a �ll. Note that some colors fade gradually from one
to the next, and some change brusquely. The smooth changes happen between stops with di�erent
o�sets (e.g., between red at 10% and crimson at 20%). The brusque changes result from stops with
the same o�set, such as red to orange (30%) or gold to green (60%).

Another cool thing you can do in SVG that you can’t do as intuitively in
CSS is apply a �ll to a stroke. Another Pen by yoksel demonstrates this
beautifully (http://bkaprt.com/psvg/08-09/, FIG 8.22).

http://bkaprt.com/psvg/08-09/

FIG 8.22: A pattern used as a �ll for a stroke.

Those are nice thick stroke-width="30" strokes there!

COMBINING FEATURES

These features of SVG aren’t mutually exclusive and, in fact, combining
them is great fun. For example, you can animate a clipping path:

<svg id="drawing" viewBox="0 65.4 792 661.1">

 <defs>

 <clipPath id="clip-star">

 <polygon id="star" points="...">

 <animate ... />

 </polygon>

 </clipPath>

 </defs>

 <g clip-path="url(#clip-star)">

 <!-- stuff! -->

 </g>

</svg>

Or you can combine technologies here, and do that animation with
Snap.svg instead of SMIL (http://bkaprt.com/psvg/08-09/):

var drawing = Snap("#drawing"),

 star = drawing.select("#star");

star.animate({

 transform: "s0.5 r45 t25 25"

 // that special string means this:

 // scale(1.5) rotate(35deg) translate(25px, 25px)

}, 1000);

Here’s another idea! Say you want an image to fade from black and white
to color—not on hover, but you want the black and white of the left half
to fade into color on the right half (FIG 8.23). We can do that by placing
two images on top of each other. Could be any SVG, but if we want to
use photographic images, those can be SVG too, with <image
xlink:href="">. Since we’re going to use the image twice, let’s make a
symbol so that we don’t repeat ourselves. Then we’ll apply the grayscale
�lter and the gradient mask to the second image. That second image will
be on top, because SVG uses document order as paint order: whatever
comes next in the source order is on top of what came before.

http://bkaprt.com/psvg/08-09/

FIG 8.23: A full-color image fades to grayscale by placing a grayscale-�ltered copy on top and
masking half of it with a gradient.

<svg width="500" height="366">

 <!-- We’re going to use the image twice, so let’s make it a
repeatable <symbol> -->

 <symbol id="image">

 <image x="0" y="0" width="500" height="366"
xlink:href="https://s3-us-west-2.amazonaws
.com/s.cdpn.io/3/rainbow-face.jpg"></image>

 </symbol>

 <!-- A filter we can use to grayscale whatever -->

 <filter id="grayscale">

 <feColorMatrix type="saturate" values="0" />

 </filter>

 <!-- A black-to-white gradient mask that we can apply to
whatever -->

 <mask maskUnits="userSpaceOnUse" id="fade">

 <linearGradient id="gradient" x1="0" y1="0" x2="100%"
y2="0">

 <stop offset="0" style="stop-color: #FFFFFF" />

 <stop offset="0.4" style="stop-color: #FFFFFF" />

 <stop offset="0.6" style="stop-color: #000000" />

 <stop offset="1" style="stop-color: #000000" />

 </linearGradient>

 <rect fill="url(#gradient)" width="100%" height="100%" />

 </mask>

 <!-- Place the image once, in full color -->

 <use xlink:href="#image"></use>

 <!-- Place the image again, on top, both grayscaling it and
masking it -->

 <use xlink:href="#image" filter="url(#grayscale)"
mask="url(#fade)"></use>

</svg>

Things really get fun when you combine these design features—you can
even apply �lters to patterns (FIG 8.24)!

FIG 8.24: A turbulence filter applied to images within a pattern used to �ll a rect.

And I could go on forever. With SVG, design e�ects can be combined
and recombined in�nitely. But I’ll force myself to stop here—now it’s
your turn to build on the foundation I’ve sketched out.

What I’ve tried to do is introduce you to a bunch of possibilities, so that
the next time you’re all, "I wonder if I could make a graphic of Susan
Kare skateboarding through the screen of an old Macintosh icon
shooting a laser beam at a hamburger icon and it blows up into a big
rainbow,” your brain will be like: “I got some ideas.”

WE ’VE TALKED ABOUT HOW browser support for SVG is pretty good, but
not ubiquitous. IE 8 and Android 2.3 don’t support it at all, and I’d say
those are pretty reasonable browser-support targets for a lot of websites.
Does that mean we give up on using SVG for sites that need to
accommodate them? Absolutely not. We don’t need to punish newer
browsers for older browsers’ lack of support, just as we don’t need to
punish older browsers with broken design and functionality.

The fallback approach that will work for you depends on how you are
using SVG. But �rst things �rst.

DO YOU NEED A FALLBACK AT ALL?

Sometimes the way we use images is purely complementary. The
website will function just �ne without them. For instance, imagine our
SVG icon system, and a shopping cart icon next to the phrase “View
Cart” in a button. Without that icon, it’s still a button that says “View

Cart.” Not as fancy, but perfectly functional. In this case, we could
feasibly skip worrying about a fallback at all.

SVG used in CSS as a background image also commonly falls into this
category. Although we will cover a fallback technique for that, images
applied in CSS are generally decorative. Making sure that the content on
top of the background is still usable may be the only fallback you need.

FIG 9.1: The Fork button on GitHub.com is an example of an image that doesn’t need a fallback.

FALLBACK FOR SVG-AS-img

The simplest approach here is to use SVG as you normally would:

Then replace that src with something that will be supported, like
dog.png. That’s exactly what the SVGeezy script by Ben Howdle does
(http://bkaprt.com/psvg/09-01/). If the script determines that a browser
doesn’t support SVG in this way, it will replace the src, and end up
looking like this in the DOM:

 <!--

http://github.com/
http://bkaprt.com/psvg/09-01/

 this will be turned into this

 if the browser doesn’t support SVG this way -->

 <script src="/js/libs/svgeezy.js"></script>

 <script>

 svgeezy.init(false, "png");

 </script>

</body>

The �le type is con�gurable, but it’s on you to ensure that the fallback
image is located in the same location as the SVG.

This works, but it comes at a cost beyond just loading additional
JavaScript. Non-supporting browsers will actually download both
versions of the image before ultimately using the fallback. That means
we’ve already betrayed our ideal of not punishing older browsers.

We can beat this double-download problem, and we’ll get to that in a
moment. But �rst, we can learn something else very useful. SVGeezy
tests for SVG-as-img support with this function:

supportsSvg: function() {

 return
document.implementation.hasFeature("http://www.w3.org/TR/SVG11/fea
ture#Image", "1.1");

}

Um, document.implementation.hasFeature? What is this wizardry? Is
there some native JavaScript API for testing feature support? For that
sort of thing, we normally turn to Modernizr, a library built from an
amalgam of clever tests developers have concocted to coerce browsers
into telling us whether they support a certain feature or not
(http://modernizr.com).

Turns out this unusual hasFeature thing is no dream come true. It’s
actually quite old and largely deprecated, but it’s still interesting.
document.implementation.hasFeature returns true for everything, except
when you use it exactly as shown above, in which case it returns true or

http://modernizr.com/

false perfectly in all known browsers based on whether that browser
supports SVG-as-img or not. So in case you need this information, now
you know that it’s quite easy to get.

And why might you need to know if a browser supports SVG-as-img in
JavaScript? Perhaps you’ll use that information to decide if you’re going
to load additional scripts to help with a fallback. Or you’ll use it as part of
a test to make a general determination about what kind of experience
your site is going to deliver to that browser, a technique now known as
mustard-cutting (http://bkaprt.com/psvg/09-02/).

You could easily build your own SVG-as-img fallback system:

// do the test

if
(!document.implementation.hasFeature("http://www.w3.org/TR/SVG11/f
eature#Image", "1.1")) {

 // if the browser doesn’t support SVG-as-

 // find all images

 var images = document.getElementsByTagName("img"), i, src,
newsrc;

 // loop through them

 for (i = 0; i < images.length; i++) {

 src = images[i].src;

 ext = src.split(".").pop();

 // if the image is .svg (note this doesn’t account for ?
query strings

 if (ext === "svg") {

 // replace that with .png

 newsrc = src.replace(".svg", ".png");

 images[i].setAttribute("src", newsrc);

 }

 }

}

These techniques also require a little more elbow grease: you have to
create the fallback images yourself and place them alongside their .svg
comrades. So when the src is replaced, the .png version is there to pop
into position. Wouldn’t it be nice if that were automated?

http://bkaprt.com/psvg/09-02/

That’s what SVGMagic helps you do (http://bkaprt.com/psvg/09-03/).
Simply use SVG-as-img like you normally would. Then load and initialize
the plugin. If it decides the browser needs fallback PNGs, it will
automatically create them for you. It does so by making a network
request to SVGMagic’s servers, which return the new images. Be
forewarned, though, that that’s a dependency over which you have no
control.

We still haven’t found a way around the double-download issue, so let’s
do that next.

One way of circumventing it is to use the picture element. The picture
element is often thought of as a solution for responsive images (serving
di�erently sized images as needed), but it can also serve di�erent image
types depending on support.

Here’s how that works in HTML:

<picture>

 <source type="image/svg+xml" srcset="graph.svg">

</picture>

If the browser supports SVG this way, source will be used; otherwise,
the fallback PNG in the img tag will be served, without the double-
download. It’s pretty great to have a fallback solution like this right in
HTML. The rub is that the browser also needs to support picture, which
is so new that any browser that supports it also supports SVG.

That doesn’t eliminate this solution from the running, though, thanks to
Picture�ll, a script that makes picture work in any browser
(http://bkaprt.com/psvg/09-04/). This sort of script is called a poly�ll, by
the way. When you load up Picture�ll, the picture syntax will work
great, delivering SVG to supporting browsers and the fallback otherwise.

As a nice side bonus, you can use the picture syntax to deliver
di�erently-sized fallback images, if necessary. For instance, you might

http://bkaprt.com/psvg/09-03/
http://bkaprt.com/psvg/09-04/

want to serve a PNG that is 800 pixels wide for a desktop IE 8, but that
would be a waste of bandwidth for a non-Retina iPhone, so you’d like to
serve a 320-pixel version there. That’s all possible with picture.

There is a catch though, beyond loading the 7 KB script. The reason
double-downloads happen in the �rst place is because of that img src in
the HTML. Browsers do what is called prefetching—they zoom through a
page looking for resources they can start downloading right away.
Prefetching is a good thing, because it helps make the web fast. But we
have no control over it. In the picture syntax we looked at, notice this
part: img src="graph.png". Prefetching will catch that and download
graph.png, whether it ends up being used or not.

In a browser that natively supports picture, the prefetcher will be smart
enough not to do that. But we can’t count on that (hence the poly�ll). To
solve this, we can just skip the src and make the markup more like this:

<picture>

 <source srcset="graph.svg" type="image/svg+xml">

 <img srcset="graph-small.png, graph-large.png 1000" alt="A
lovely graph">

</picture>

Solved! Even though, as I write this, that’s technically invalid code, it
works with Picture�ll and in browsers that already support picture. So
you could even safely pull out Picture�ll one day and not worry about
breaking anything. I wouldn’t be terribly surprised if this eventually
becomes valid markup, since it’s so useful.

FALLBACK FOR SVG AS background-image

This method is pretty great, because it relies on some simple sleight of
hand right in the CSS, rather than on some other technology or much
additional code.

.my-element {

 background-image: url(fallback.png);

 background-image:

 linear-gradient(transparent, transparent),

 url(image.svg);

}

It does the trick because of some serendipitous overlap in features that
browsers support. Two forces are at work here: multiple backgrounds
and “old” syntax gradients. A browser that supports both of these things
also necessarily supports SVG as background-image. Thus, the SVG
background image we supplied here will be shown (the gradient is
completely transparent and will have no e�ect). If either of those things
fails, the whole declaration fails, and the fallback background-image
declaration takes e�ect.

Because this is so straightforward, it’s kind of tempting to exploit it for
images used in HTML as well. After all, it would be pretty easy to just
use a div with a background instead of an image. The danger here is that
background images aren’t content. If the content here were ever
syndicated through email or RSS, you’d lose the background images
entirely. Not to mention that that usage is semantically incorrect, and
you’d have to take extra steps to ensure accessibility. There is no alt text
for background images.

Another possibility here would be to run the JavaScript test for SVG-as-
img (the support is identical for background images), add a class to to the

html element (something like <html class="no-svg">) and then:

.my-element {

 background-image: url(image.svg);

}

html.no-svg .my-element {

 background-image: url(fallback.png);

}

This works, but since it requires JavaScript, I prefer the multiple-
backgrounds trick.

FALLBACK FOR INLINE SVG

Building a fallback for inline SVG is a little trickier than the other two,
but certainly doable. Let’s break it into two categories.

Do you want to start with SVG and gracefully degrade?

This method is forward-thinking in the sense that down the road, you
can decide to pull out the fallback if you think browser support is good
enough.

Here’s a possible approach, one I quite like:

1. Use inline SVG normally:

<svg class="icon icon-cart"
xmlns="http://www.w3.org/2000/svg">

 <use xlink:href="#icon-cart"></use>

</svg>

2. Make an inline SVG test in JavaScript:

var supportsSvg = function() {

 var div = document.createElement("div");

 div.innerHTML = "<svg/>";

 return (div.firstChild && div.firstChild.namespaceURI) ==
"http://www.w3.org/2000/svg";

};

3. If the browser doesn’t support inline SVG, add a class name to
the html element:

if (supportsSvg()) {

 document.documentElement.className += "no-svg";

};

4. Use that class name to set a background image on the svg:

html.no-svg .icon-key {

 display: inline-block;

 width: 33px;

 height: 33px;

 margin-right: 0.25em;

 vertical-align: middle;

 /* Even better, a sprite */

 background: url(icon-fallbacks/key.png) no-repeat;

}

You can see the technique in action on CodePen
(http://bkaprt.com/psvg/09-05/).

There are only a couple of reasons to you might choose to avoid this
method:

1. If JavaScript doesn’t load or run in a browser that also doesn’t
support inline SVG, no icon will be present.

2. You need to go back further than IE 8.

IE 8 will need the fallback background image, but it can be set directly on
the svg element like we did in the fourth step, provided that it has the
correct xmlns attribute. IE 7 and older won’t allow that. You can still use
this technique, though; just wrap the svgs in a div or span and apply
classes to them instead. Doing things this way will ensure that a proper
fallback will be present even if JavaScript doesn’t load or isn’t available.

Or would you rather start with a span and progressively
enhance?

Imagine a Close button that you hope will appear simply as a cross
shape: ×. Start with a span containing the text “Close”—worst-case
scenario, your button will still say “Close.”

<button aria-label="Close">

 Close

http://bkaprt.com/psvg/09-05/

</button>

Now, if you run the JavaScript test we just went over and see that the
browser does support inline SVG, inject it and replace the span.

if (supportsSvg()) {

 var inlineSvgs = document.querySelectorAll("span.inline-svg");

 for (i = 0; i < inlineSvgs.length; i++) {

 var span = inlineSvgs[i];

 var svgNS = "http://www.w3.org/2000/svg";

 var xlinkNS = "http://www.w3.org/1999/xlink";

 var svg = document.createElementNS(svgNS, "svg");

 var use = document.createElementNS(svgNS, "use");

 // Prepare the <use> element

 use.setAttributeNS(xlinkNS, "xlink:href",
span.getAttribute("data-xlink"));

 // Append it

 svg.appendChild(use);

 // Prepare the SVG

 svg.setAttribute("class", "inline-svg");

 // Inject the SVG

 span.parentNode.insertBefore(svg, span);

 // Get rid of the

 span.remove();

 }

}

Dave Rupert thought this up (http://bkaprt.com/psvg/09-06/).

BEWARE THE DOUBLE-DOWNLOAD

These aren’t the only SVG fallbacks you’ll see out there. I’m intentionally
only showing you the ones I think work best and are the most
responsible. A lot of the techniques I see around are guilty of either a
double-download or extreme complexity.

Remember these rules of thumb:

http://bkaprt.com/psvg/09-06/

If you see img src="" anywhere in the HTML, that will trigger a
download. If you try to replace that source with JavaScript, that
will trigger another download.

If you see a CSS background-image on a selector that matches
anything in the HTML, that will trigger a download.

Double-downloads are awful for performance. Avoid them if
possible.

Ideally, circumvent situations where every single fallback is a
separate network request.

MAKING SVG ACCESSIBLE

Although there is much we can do to create accessible experiences on
the web, accessibility is a huge topic that I can only touch on brie�y
here. For a fantastic general resource, see the Accessibility Project
(a11yproject.com).

In matters of accessibility, best practices are relevant to SVG in the same
way they’re relevant to HTML. For instance, when we’re using SVG as
the source of an img, we need to provide proper alt text that explains
what’s going on in the image.

But then there is inline SVG, which is a whole area of focus unto itself.
Here I’ll defer to Léonie Watson, who wrote a wonderful article
describing all of the things we can do to create accessible SVG
(http://bkaprt.com/psvg/09-07/). I’ll attempt to summarize the piece here.

Use SVG

I enjoy this one—it serves as a good reminder of the breadth of
accessibility concerns. Remember that SVG is visually crisp; for the
visually impaired, SVG’s sharpness can be hugely bene�cial.

http://a11yproject.com/
http://bkaprt.com/psvg/09-07/

Use inline SVG

I’ve attempted to extol the virtues of inline SVG throughout this book—
and I’m not done yet! Inline SVG allows assistive technologies (AT) like
screen readers more access to information than is possible using SVG
any other way.

Use title and desc

Use title like you would an alt attribute on an img. It allows an AT user
to identify what it is. Use desc to provide more detailed information.

Use an ARIA role

An element’s role de�nes its purpose. To guarantee that all browsers
apply the correct role to SVG, de�ne it explicitly.

Combining Watson’s recommendations so far, properly accessible SVG
looks like this:

<svg aria-labelledby="title desc" role="img">

 <title id="title">Green rectangle</title>

 <desc id="desc">A light green rectangle with rounded corners
and a dark green border.</desc>

 <rect width="75" height="50" rx="10" ry="10" fill="#90ee90"
stroke="#228b22" stroke-fill="1" />

</svg>

Use text

SVG can render regular ol’ web text just like HTML can. In HTML, you
mark up text with elements like h1, p, and the like. In SVG, you do that

with the text element, which serves a similar function and makes text
just as accessible as those HTML elements do.

The text is also copy-and-pasteable and SEO-friendly, which is nice. Plus,
the text scales in proportion with the rest of the SVG—a lot harder to
pull o� in HTML.

SVG also has access to all the same fonts that the rest of your document
does. So if you are loading up a custom @font-face font for your site (as
we are in these examples), you can use that font in your SVG just �ne.

<text font-family="Custom Font, sans-serif" font-size="14" letter-
spacing="10">Bluegrass Festival</text>

One limitation of text in SVG is that it can’t autowrap or re�ow, a
problem that may be solved in SVG 2.

FIG 9.2: Text used in an SVG with the text element.

Make interactive elements focusable

If your SVG is interactive, you can use a links around the interactive
elements to make them focusable from the keyboard—for instance, if

part of the image has a hover state, or is clickable as a link:

<a xlink:href="http://example.com">

 <rect width="75" height="50" rx="20" ry="20" fill="#90ee90"
stroke="#228b22" stroke-fill="1" />

 <text x="35" y="30" font-size="1em" text-anchor="middle"
fill="#000000">Website</text>

FIG 9.3: SVG text is selectable like any other real text on the web, and it scales proportionally with
the rest of the SVG.

Create an alternative

If the the title and description aren’t enough to explain exactly and
clearly what is happening in the SVG to someone who can’t see it, create
an alternative experience. For instance, perhaps SVG is being used to
draw a chart. Note that SVG is particularly great at drawing charts on the
web. While it doesn’t have any charting-speci�c features, all of its
features lend themselves well to drawing bar charts, line graphs, pie
charts, and the like. There are robust charting libraries that output
entirely in SVG, like amCharts and Highcharts
(http://bkaprt.com/psvg/09-08/, http://bkaprt.com/psvg/09-09/).

Now, a string of text typically isn’t su�cient to explain a chart full of
information. So perhaps you could use JavaScript to build an SVG chart
from data in the form of a table that, though visually hidden, is still
available for AT. That way, the user will experience it either as a
perfectly useful table, or as an SVG chart from that same data. You can
even use that same table of data to build di�erent types of visualization
as needed.

Here’s a block of code that stitches all of these pieces together:

<svg aria-labelledby="title desc" viewBox="0 0 400 327">

 <title id="title">Graves Mountain Bluegrass Festival</title>

 <desc id="desc">Advertisement for Graves Mountain Bluegrass
Festival. Blue skies and three differently sized blue-tinted
mountains.</desc>

 <a xlink:href="http://gravesmountain.com" tabindex="0"
role="link">

 <polygon opacity="0.2" fill="#7DACDC" points="0,327
200,173.797 400,327 "/>

 <!-- and other shapes -->

 <text x="35" y="30">Graves</text>

 <!-- and other text -->

</svg>

http://bkaprt.com/psvg/09-08/
http://bkaprt.com/psvg/09-09/

An accessibility checklist like this can be valuable: it gets you thinking
about accessibility, and sends you o� and running in the right direction.
I would warn against thinking of a checklist as a “just do these things
and then wipe your hands of it” re�ex, however. Instead, I’d encourage
this sort of mindset:

1. Summon your powers of empathy and try to use the things you
build with di�erent impairments in mind.

2. Use the things you build with di�erent assistive technologies,
such as a screen reader like JAWS (http://bkaprt.com/psvg/09-10/).

3. Consult with accessibility professionals.

We just covered a considerable amount of technical stu�. Admittedly, for
most of us, dealing with fallbacks and managing accessibility may not be
the most enjoyable part of working with graphics. But I think it’s pretty
dang rewarding knowing that our graphics are as helpful as they can be
to anybody using our sites.

Most rewarding of all: now we’re fully armed with the information we
need when people open a conversation with, “Well, I’d like to use SVG,
but [insert excuse about support here].” Now it’s our turn to hold up our
WELL ACTUALLY �ngers.

http://bkaprt.com/psvg/09-10/

CONCLUSION

WE ’VE LEARNED A LOT in a short amount of time, my friends. We’ve
learned about the virtues of SVG, when it is the appropriate choice, and
how we can get it onto our sites. We’ve looked at tools that help you
work with it, from elaborate software like Illustrator down to command-
line tools like Grunt. We’ve learned about icon systems, fallbacks, and
sizing concerns. We’ve considered performance, accessibility, and
responsiveness. We’ve learned about some of the design possibilities of
SVG, like animation, �lters, and masks.

Yet there is so much we didn’t cover. Attributes left out, values
unspoken, entire tags unsung. In part, that’s because of this book’s
brevity: not only would a 500-page slog through every little detail of SVG
make for a dry read, but it would also be a poor substitute for “the
internet.” Quite a bit has been written about SVG that you can search for
and �nd, including plenty of articles by yours truly. I even maintain an
up-to-date compendium of SVG information that points to the best
resources I know of (http://bkaprt.com/psvg/10-01/).

Another reason to have covered only what we did here is that these are
the features I use on a daily basis as a front-end developer. A di�erent
developer would likely have covered slightly di�erent things.

For instance, SVG is so perfect for charting. I can imagine a whole chapter
(or book!) on building charts with SVG. If I needed to build a charting
system, I would reach for SVG in a heartbeat. But I haven’t done that
myself yet, so I merely touched on it here. And that’s only one thing I
could have explored in much greater depth.

I hope that reading this book has shown you a way into SVG and what it
looks like to use it. One of my favorite sayings is “Pave the cow paths.”
Like, if you’re building a sidewalk, build it where people are already
walking. In the web community, this idea has a lot of currency; it means
we should standardize things around what developers are already doing.

http://bkaprt.com/psvg/10-01/

It doesn’t quite �t for SVG, though: the sidewalks are already there. The
foundation is sound, but years of neglect have left a few cracks and a bit
of grass growing up over the edges.

By using SVG now, we’re doing ourselves and our users a favor. But
we’re also doing the web a favor by forging a new path that browser
makers and standards organizations can see and react to, which in turn
will help make SVG even stronger.

So pave the cow paths—but also patch the cracks, pull the weeds, and
clear some ground for new, hitherto unimagined trails.

RESOURCES

I’ve sprinkled links to resources through this book, and I hope you’ve
followed them as they’ve cropped up. This section lists documentation,
texts, sites, and tools that I �nd particularly valuable, but that I didn’t
explicitly cover in the book or explore in detail. Many of these resources
have interactive elements—the web is perfect for that; books, not so
much. Be sure to check out these gems:

“SVG,” Mozilla Developer Network. This is a directory page that
links to hundreds of individual pages covering every SVG
element, attribute, DOM interface, e�ect, and much more. It is
likely the most comprehensive resource on SVG
(http://bkaprt.com/psvg/11-01/).

“A Complete Guide to SVG Fallbacks,” Amelia Bellamy-Royds.
This covers every possible scenario of SVG usage and browsers
that don’t support it (http://bkaprt.com/psvg/11-02/).

“SVG on the Web – A Practical Guide,” Jake Giltso�. A long-
form, open-source reference guide that lists quite a few resources
as well (svgontheweb.com).

“Inline SVG vs Icon Fonts [CAGEMATCH],” by me. My
complete, point-by-point analysis compares the two most popular
techniques for icon systems (http://bkaprt.com/psvg/03-06/).

“Ten Reasons We Switched from an Icon Font to SVG,” Ian
Feather. Ian’s rationale for moving to an SVG icon system on
Lonely Planet in�uenced my own thinking
(http://bkaprt.com/psvg/04-06/).

“Use SVG for Icons,” Pete LePage. If you aren’t convinced by
lone developers’ opinions, perhaps you’ll like the o�cial advice
from Google (http://bkaprt.com/psvg/11-03/).

IcoMoon: An interactive tool for building SVG sprites for use as
an icon system. One of the longest-running and best tools for the

http://bkaprt.com/psvg/11-01/
http://bkaprt.com/psvg/11-02/
https://svgontheweb.com/
http://bkaprt.com/psvg/03-06/
http://bkaprt.com/psvg/04-06/
http://bkaprt.com/psvg/11-03/

job (http://bkaprt.com/psvg/04-01/).

Grunticon: Perhaps the most popular SVG-based icon system
tool, Grunticon generates a conditionally-loaded CSS �le where
each icon is converted into a class that applies a data URL
background-image of that icon (http://bkaprt.com/psvg/11-04/).

grunt-svgstore: Fabrice Weinburg’s grunt plugin combines
multiple SVG �les into a single sprite. I dreamed up the idea for a
tool like this; Weinburg built what I believe is the �rst of its kind
(http://bkaprt.com/psvg/04-03/).

gulp-svg-sprite: The Gulp equivalent of Weinburg’s plugin, by
Joschi Kuphal (http://bkaprt.com/psvg/11-05/).

“Understanding SVG Coordinate Systems and Transformations,”
Sara Soueidan. Sara has done lots of SVG evangelism. This article
is among many of hers that plumb one aspect of SVG deeply; it
includes an interactive exploration tool
(http://bkaprt.com/psvg/11-06/).

Scalable Vector Graphics (SVG) 1.1: This is the o�cial
speci�cation for SVG by the W3C (http://bkaprt.com/psvg/11-07/).

Scalable Vector Graphics (SVG) 2. Like any good new
speci�cation, this draft speci�cation for the upcoming version of
SVG “adds new features commonly requested by authors.” I
know I’m excited for things like wrapping text
(http://bkaprt.com/psvg/11-08/).

“Bespoke SVG Reference,” Chris Nager. The discovery that path
is the ultimate SVG shape element—all shapes are ultimately
drawn with it—was a real eye-opener for me. The path syntax
may look a bit strange, but Nager breaks down how simple it
actually is (http://bkaprt.com/psvg/11-09/).

SVGeneration: This interactive tool does a wonderful job of
showing o� interesting SVG design possibilities generated from
very little code (svgeneration.com).

http://bkaprt.com/psvg/04-01/
http://bkaprt.com/psvg/11-04/
http://bkaprt.com/psvg/04-03/
http://bkaprt.com/psvg/11-05/
http://bkaprt.com/psvg/11-06/
http://bkaprt.com/psvg/11-07/
http://bkaprt.com/psvg/11-08/
http://bkaprt.com/psvg/11-09/
http://www.svgeneration.com/

SVG Fancy Town: This is my personal collection of SVG demos
that I �nd particularly impressive (http://bkaprt.com/psvg/11-10/).

“The Image That Called Me,” Mario Heiderich. This is probably
the most widely cited text regarding SVG and security. A lot of
the danger boils down to the fact that SVG is XML-based and can
contain JavaScript, which makes it an XSS concern
(http://bkaprt.com/psvg/11-11/, PDF).

“Tips for Creating Accessible SVG,” Léonie Watson. A classic
article on how to structure SVG to be accessible
(http://bkaprt.com/psvg/09-07/).

Can I Use…: This is the most popular site for tracking browser
support of browser features, including SVG. Admirably, the site
doesn’t track SVG as a blanket “yes or no” in terms of support,
but looks at individual SVG features and partial support levels of
those features (http://bkaprt.com/psvg/11-12/).

“You Don't Know SVG,” Dmitry Baranovskiy. A video of a talk
bursting with SVG possibilities (http://bkaprt.com/psvg/11-13/).

SVG Weirdness: This GitHub repo organized by Emil Björklund
tracks unexpected cross-browser bugs in SVG
(http://bkaprt.com/psvg/11-14/).

Chromium Bug Tracker: A collection of SVG bugs reported to
the Chromium project (http://bkaprt.com/psvg/11-15/).

Bugzilla: A collection of SVG bugs reported to the Mozilla project
(http://bkaprt.com/psvg/11-16/).

http://bkaprt.com/psvg/11-10/
http://bkaprt.com/psvg/11-11/
http://bkaprt.com/psvg/09-07/
http://bkaprt.com/psvg/11-12/
http://bkaprt.com/psvg/11-13/
http://bkaprt.com/psvg/11-14/
http://bkaprt.com/psvg/11-15/
http://bkaprt.com/psvg/11-16/

REFERENCES

Shortened URLs are numbered sequentially; the related long URLs are
listed below for reference.

Introduction

00-01 http://thenounproject.com/term/dog/364/

00-02 https://abookapart.com/products/responsible-responsive-design

00-03 http://5by5.tv/webahead/67

00-04 https://en.wikipedia.org/wiki/Broadband#cite_note-20

00-05 https://developers.google.com/speed/webp/faq

http://thenounproject.com/term/dog/364/
https://abookapart.com/products/responsible-responsive-design
http://5by5.tv/webahead/67
https://en.wikipedia.org/wiki/Broadband#cite_note-20
https://developers.google.com/speed/webp/faq

Chapter 1

01-01 http://codepen.io/chriscoyier/pen/qEdzqB

01-02 http://codepen.io/chriscoyier/pen/XJmJjX/

01-03 http://codepen.io/chriscoyier/pen/pvEGVm

01-04 http://codepen.io/chriscoyier/pen/PwWPNa

01-05 http://caniuse.com/#cats=SVG

http://codepen.io/chriscoyier/pen/qEdzqB
http://codepen.io/chriscoyier/pen/XJmJjX/
http://codepen.io/chriscoyier/pen/pvEGVm
http://codepen.io/chriscoyier/pen/PwWPNa
http://caniuse.com/#cats=SVG

Chapter 2

02-01 http://www.adobe.com/products/illustrator.html

02-02 http://bohemiancoding.com/sketch/

02-03 https://inkscape.org/en/

02-04 http://svg-edit.googlecode.com/svn/branches/stable/editor/svg-
editor.html

02-05 https://github.com/duopixel/Method-Draw

02-06 http://editor.method.ac/

02-07 https://github.com/artursapek/mondrian

http://www.adobe.com/products/illustrator.html
http://bohemiancoding.com/sketch/
https://inkscape.org/en/
http://svg-edit.googlecode.com/svn/branches/stable/editor/svg-editor.html
https://github.com/duopixel/Method-Draw
http://editor.method.ac/
https://github.com/artursapek/mondrian

Chapter 3

03-01 http://designingforperformance.com

03-02 https://www.igvita.com/2012/07/19/latency-the-new-web-
performance-bottleneck/

03-03 https://css-tricks.com/forums/topic/swapping-out-svg-icons-
problems-with-mobile-safari/

03-04 https://github.com/jonathantneal/svg4everybody

03-05 https://css-tricks.com/examples/svg-fallbacks/

03-06 https://css-tricks.com/icon-fonts-vs-svg/

03-07 https://css-tricks.com/svg-fragment-identi�ers-work/

http://designingforperformance.com/
https://www.igvita.com/2012/07/19/latency-the-new-web-performance-bottleneck/
https://css-tricks.com/forums/topic/swapping-out-svg-icons-problems-with-mobile-safari/
https://github.com/jonathantneal/svg4everybody
https://css-tricks.com/examples/svg-fallbacks/
https://css-tricks.com/icon-fonts-vs-svg/
https://css-tricks.com/svg-fragment-identifiers-work/

Chapter 4

04-01 https://icomoon.io/app/#/select

04-02 http://24ways.org/2013/grunt-is-not-weird-and-hard/

04-03 https://github.com/FWeinb/grunt-svgstore

04-04 http://feedback.livereload.com/knowledgebase/articles/86242-how-
do-i-install-and-use-the-browser-extensions

04-05 http://�lamentgroup.com/lab/grunticon-2.html

04-06 http://ianfeather.co.uk/ten-reasons-we-switched-from-an-icon-font-
to-svg/

04-07 http://gulpjs.com

04-08 https://github.com/w0rm/gulp-svgstore

04-09 http://codepen.io/chriscoyier/pen/rerEYW

04-10 https://github.com/KenPowers/gulp-cheerio

04-11 http://codepen.io/chriscoyier/pen/yOqdve

04-12 https://github.com/broccolijs/broccoli

https://icomoon.io/app/#/select
http://24ways.org/2013/grunt-is-not-weird-and-hard/
https://github.com/FWeinb/grunt-svgstore
http://feedback.livereload.com/knowledgebase/articles/86242-how-do-i-install-and-use-the-browser-extensions
http://filamentgroup.com/lab/grunticon-2.html
http://ianfeather.co.uk/ten-reasons-we-switched-from-an-icon-font-to-svg/
http://gulpjs.com/
https://github.com/w0rm/gulp-svgstore
http://codepen.io/chriscoyier/pen/rerEYW
https://github.com/KenPowers/gulp-cheerio
http://codepen.io/chriscoyier/pen/yOqdve
https://github.com/broccolijs/broccoli

Chapter 5

05-01 https://github.com/svg/svgo

05-02 https://github.com/sindresorhus/grunt-svgmin

05-03 https://github.com/svg/svgo/tree/master/plugins

05-04 https://github.com/svg/svgo-gui

05-05 http://codedread.com/scour/

05-06 http://petercollingridge.appspot.com/svg-optimiser

05-07 http://petercollingridge.appspot.com/svg-editor/

05-08 https://jakearchibald.github.io/svgomg/

https://github.com/svg/svgo
https://github.com/sindresorhus/grunt-svgmin
https://github.com/svg/svgo/tree/master/plugins
https://github.com/svg/svgo-gui
http://codedread.com/scour/
http://petercollingridge.appspot.com/svg-optimiser
http://petercollingridge.appspot.com/svg-editor/
https://jakearchibald.github.io/svgomg/

Chapter 6

06-01 http://codepen.io/chriscoyier/pen/MYJBgR/

06-02 http://sarasoueidan.com/blog/svg-coordinate-systems/

06-03 https://css-tricks.com/scale-svg/

06-04 http://alistapart.com/article/responsive-web-design

06-05 http://responsivelogos.co.uk

http://codepen.io/chriscoyier/pen/MYJBgR/
http://sarasoueidan.com/blog/svg-coordinate-systems/
https://css-tricks.com/scale-svg/
http://alistapart.com/article/responsive-web-design
http://responsivelogos.co.uk/

Chapter 7

07-01 http://codepen.io/team/wufoo/pen/ZYQQNQ

07-02 http://codepen.io/chriscoyier/pen/emvJjG

07-03 https://css-tricks.com/svg-animation-on-css-transforms/

07-04 http://en.wikipedia.org/wiki/Synchronized_Multimedia_Integration_ 
Language

07-05
http://codepen.io/chriscoyier/pen/9b1b826a238a601b4122f79b7017c443

07-06 https://groups.google.com/a/chromium.org/forum/#!topic/blink-
dev/5o0yiO440LM

07-07 https://wpdev.uservoice.com/forums/257854-microsoft-edge-
developer/suggestions/6509024-svg-animation-elements

07-08 http://css-tricks.com/weighing-svg-animation-techniques-
benchmarks/

07-09 https://www.youtube.com/watch?v=1ZWugkJV5Ks

07-10 https://css-tricks.com/smil-is-dead-long-live-smil-a-guide-to-
alternatives-to-smil-features/

07-11 http://codepen.io/chriscoyier/blog/examples-of-animatetransform

07-12 http://codepen.io/chriscoyier/pen/MYxoVa?editors=110

07-13 http://lea.verou.me/2012/02/moving-an-element-along-a-circle/

07-14 https://www.chromestatus.com/feature/6190642178818048

http://codepen.io/team/wufoo/pen/ZYQQNQ
http://codepen.io/chriscoyier/pen/emvJjG
https://css-tricks.com/svg-animation-on-css-transforms/
http://en.wikipedia.org/wiki/Synchronized_Multimedia_Integration_Language
http://codepen.io/chriscoyier/pen/9b1b826a238a601b4122f79b7017c443
https://groups.google.com/a/chromium.org/forum/#!topic/blink-dev/5o0yiO440LM
https://wpdev.uservoice.com/forums/257854-microsoft-edge-developer/suggestions/6509024-svg-animation-elements
http://css-tricks.com/weighing-svg-animation-techniques-benchmarks/
https://www.youtube.com/watch?v=1ZWugkJV5Ks
https://css-tricks.com/smil-is-dead-long-live-smil-a-guide-to-alternatives-to-smil-features/
http://codepen.io/chriscoyier/blog/examples-of-animatetransform
http://codepen.io/chriscoyier/pen/MYxoVa?editors=110
http://lea.verou.me/2012/02/moving-an-element-along-a-circle/
https://www.chromestatus.com/feature/6190642178818048

07-15 http://css-tricks.com/guide-svg-animations-smil/

07-16 http://www.w3.org/TR/SVG/animate.html#AnimateElement

07-17 http://jakearchibald.com/2013/animated-line-drawing-svg/

07-18 https://css-tricks.com/svg-line-animation-works/

07-19
http://codepen.io/chriscoyier/pen/baea7cfc6f133ca14bd414c7b82b287e

07-20 http://css-tricks.com/using-requestanimationframe/

07-21 http://css-tricks.com/svg-animation-on-css-transforms/

07-22 http://codepen.io/chriscoyier/pen/wBJMJw

07-23 http://snapsvg.io/docs/

07-24 http://codepen.io/tag/snapsvg/

07-25 https://developers.google.com/web/fundamentals/look-and-
feel/animations/css-vs-javascript

07-26 https://www.youtube.com/watch?
v=1ZWugkJV5Ks&feature=youtu.be

07-27 http://codepen.io/GreenSock/

http://css-tricks.com/guide-svg-animations-smil/
http://www.w3.org/TR/SVG/animate.html#AnimateElement
http://jakearchibald.com/2013/animated-line-drawing-svg/
https://css-tricks.com/svg-line-animation-works/
http://codepen.io/chriscoyier/pen/baea7cfc6f133ca14bd414c7b82b287e
http://css-tricks.com/using-requestanimationframe/
http://css-tricks.com/svg-animation-on-css-transforms/
http://codepen.io/chriscoyier/pen/wBJMJw
http://snapsvg.io/docs/
http://codepen.io/tag/snapsvg/
https://developers.google.com/web/fundamentals/look-and-feel/animations/css-vs-javascript
https://www.youtube.com/watch?v=1ZWugkJV5Ks&feature=youtu.be
http://codepen.io/GreenSock/

Chapter 8

08-01 http://avatars.adorable.io/

08-02 http://codepen.io/lbebber/pen/LELBEo

08-03 http://www.w3.org/TR/SVG/�lters.html

08-04 http://codepen.io/chriscoyier/pen/xbqdav

08-05 http://codepen.io/chriscoyier/pen/MYmbwv/

08-06 http://mcc.id.au/blog/2012/12/mask-type

08-07 http://peterhrynkow.com/how-to-compress-a-png-like-a-jpeg/

08-08 http://codepen.io/yoksel/pen/xmshn

08-09 http://codepen.io/yoksel/pen/smdFh

http://avatars.adorable.io/
http://codepen.io/lbebber/pen/LELBEo
http://www.w3.org/TR/SVG/filters.html
http://codepen.io/chriscoyier/pen/xbqdav
http://codepen.io/chriscoyier/pen/MYmbwv/
http://mcc.id.au/blog/2012/12/mask-type
http://peterhrynkow.com/how-to-compress-a-png-like-a-jpeg/
http://codepen.io/yoksel/pen/xmshn
http://codepen.io/yoksel/pen/smdFh

Chapter 9

09-01 http://benhowdle.im/svgeezy/

09-02 http://responsivenews.co.uk/post/18948466399/cutting-the-mustard

09-03 https://dirkgroenen.github.io/SVGMagic/

09-04 https://github.com/scottjehl/picture�ll

09-05 http://codepen.io/chriscoyier/pen/zxwMQv

09-06 http://codepen.io/davatron5000/pen/GgqWGm?editors=101

09-07 http://www.sitepoint.com/tips-accessible-svg/

09-08 http://www.amcharts.com

09-09 http://www.highcharts.com/

09-10 http://www.freedomscienti�c.com/JAWSHQ/JAWSHeadquarters01

Conclusion

10-01 http://css-tricks.com/mega-list-svg-information/

Resources

11-01 https://developer.mozilla.org/en-US/docs/Web/SVG

11-02 https://css-tricks.com/a-complete-guide-to-svg-fallbacks/

11-03 https://developers.google.com/web/fundamentals/design-and-
ui/media/images/use-icons?hl=en

http://benhowdle.im/svgeezy/
http://responsivenews.co.uk/post/18948466399/cutting-the-mustard
https://dirkgroenen.github.io/SVGMagic/
https://github.com/scottjehl/picturefill
http://codepen.io/chriscoyier/pen/zxwMQv
http://codepen.io/davatron5000/pen/GgqWGm?editors=101
http://www.sitepoint.com/tips-accessible-svg/
http://www.amcharts.com/
http://www.highcharts.com/
http://www.freedomscientific.com/JAWSHQ/JAWSHeadquarters01
http://css-tricks.com/mega-list-svg-information/
https://developer.mozilla.org/en-US/docs/Web/SVG
https://css-tricks.com/a-complete-guide-to-svg-fallbacks/
https://developers.google.com/web/fundamentals/design-and-ui/media/images/use-icons?hl=en

11-04 https://github.com/�lamentgroup/grunticon

11-05 https://github.com/jkphl/gulp-svg-sprite

11-06 https://sarasoueidan.com/blog/svg-coordinate-systems/

11-07 http://www.w3.org/TR/SVG11/

11-08 https://svgwg.org/svg2-draft

11-09 https://medium.com/@chrisnager/bespoke-svg-reference-
e22eb733272

11-10 http://codepen.io/collection/svfAa

11-11
https://www.owasp.org/images/0/03/Mario_Heiderich_OWASP_Sweden_
The_image_that_called_me.pdf

11-12 http://caniuse.com/#search=svg

11-13 https://www.youtube.com/watch?v=SeLOt_BRAqc

11-14 https://github.com/emilbjorklund/svg-weirdness/issues

11-15 https://bugs.chromium.org/p/chromium/issues/list?
can=2&q=svg&colspec=ID+Pri+M+Week+ReleaseBlock+Cr+Status+Owner+
Summary+OS+Modi�ed&x=m&y=releaseblock&cells=tiles

11-16 https://bugzilla.mozilla.org/buglist.cgi?quicksearch=svg

https://github.com/filamentgroup/grunticon
https://github.com/jkphl/gulp-svg-sprite
https://sarasoueidan.com/blog/svg-coordinate-systems/
http://www.w3.org/TR/SVG11/
https://svgwg.org/svg2-draft
https://medium.com/@chrisnager/bespoke-svg-reference-e22eb733272
http://codepen.io/collection/svfAa
https://www.owasp.org/images/0/03/Mario_Heiderich_OWASP_Sweden_The_image_that_called_me.pdf
http://caniuse.com/#search=svg
https://www.youtube.com/watch?v=SeLOt_BRAqc
https://github.com/emilbjorklund/svg-weirdness/issues
https://bugs.chromium.org/p/chromium/issues/list?can=2&q=svg&colspec=ID+Pri+M+Week+ReleaseBlock+Cr+Status+Owner+Summary+OS+Modified&x=m&y=releaseblock&cells=tiles
https://bugzilla.mozilla.org/buglist.cgi?quicksearch=svg

INDEX

@font-face 43

@keyframe 86

@media 82

A

Accessibility Project 134

Adobe Illustrator 16, 45, 57–60, 77–79, 113

Ajax 39–40

alignment 76

amCharts 138

Android 14, 39, 124

animating paths 95

animation

embedded 92–95

techniques 92

Apache server 35

Apple 3

Archibald, Jake 66, 95

ARIA 12

role 135

artboard 25

sizing 77

aspect ratios 72

assistive technologies 135

attributes

animate tag 90

removal of 66

Autodesk Graphic 19

B

Baranovskiy, Dmitry 144

Base64 encoding 51–52

basic shapes 5

Bebber, Lucas 105

Bellamy-Royds, Amelia 76

bitmap 1

Björklund, Emil 144

Blink 92

Broccoli 56

browser

desktop 15

mobile 15

support 13–15, 124

Brunch 56

Bugzilla 144

C

Cache-Control header 41–42

Can I Use 15

Cederholm, Dan 44

charting libraries 138

Cheerio 55

Chrome 14, 40

Chromium Bug Tracker 144

clipPath 111

clipping 111

CodePen 88, 132

Collingridge, Peter 66

color-changing 90

color matrix 105

compressing 44

contain 76

content image 10

coordinate system 107

cover 76

CSS

sprite 25

styling 31–33

D

data URL 49

decimal precision 65

defs 27

desc 135

DOM 12, 36, 39

Shadow 32

double-download 129, 134

triggers 134

Drasner, Sarah 92

E

element queries 85

external source 35

F

fallbacks 49, 124

inline SVG 131–133

SVG as background-image 129–130

SVG-as-img 125–129

Feather, Ian 50

�ll 53, 118–119

�lters 102–105

Firefox 14, 88

�uid layout 81

fragment identi�ers 36

G

GitHub 23

Gooey Menus 105

gradient 113

Greensock 100–101

Grunt 46

grunt-contrib-watch 47–48

Grunt�le.js 46

Grunticon 48–49

grunt-svgmin 62

Gulp 52

gulp�le.js 52

GZIP 32

H

Harrison, Joe 82

hasFeature 126

Heiderich, Mario 143

Highcharts 138

Hogan, Lara 24

Howdle, Ben 125

Hrynkow, Peter 116–117

HTTP1.x 37

HTTP/2 36–37

HTTP requests 24

I

IcoMoon 45

icon fonts 43

Inkscape 18

Internet Explorer 14, 37, 124

iOS 14, 19

iPad 19

iPhone 129

J

JavaScript 12, 36, 91, 96–101

JAWS 139

Jehl, Scott 3, 44

JPG 6

jQuery 41

K

Kare, Susan 123

L

layer stacking 20

LePage, Pete 142

Lilley, Chris 105

LiveReload 48

Lonely Planet 50

M

Marcotte, Ethan 81

masking 111

partial 115

masks, alpha 115

media queries 82–84

Method Draw 21

Modernizr 126

Mondrian 21

Mozilla Developer Network 142

N

Nager, Chris 143

namespace 39

Neal, Jonathan 37

network request 24–25, 35–38

Node.js 61

Noun Project 1

O

one-request 37

Opera 14

P

path 5

Path�nder 69

patterns 106–110

performance 92

PHP 34

Picture�ll 128

plugins 46

PNG 6

poly�ll 37, 128–129

position-changing 90

prefetching 129

presentational attribute 54

preserveAspectRatio 73–78

progressive enhancement 132

Python 66

R

raster 1–2

Retina 3

RSS 11

Rupert, Dave 133

S

Safari 14, 34

scaling 76

Schepers, Doug 4, 16

Schiller, Je� 66

Scour 66

screen reader 29, 135, 139

shape-shifting 90

Simmons, Jen 4

sizing 70

Sketch 17

SMIL 89–94

Snap.svg 98–99, 120

software

desktop 16–19

mobile 19

web 20

Sorhus, Sindre 62

Soueidan, Sara 76, 95

source order 20

span 132

stroke 119

support 124

SVG

as CSS background-image 10

as HTML img 9

de�nition 2

design work�ow 45

Fancy Town 143

inline 11, 25, 134

responsive 81

Weirdness 144

SVG-Edit 20

SVG Editor 66

SVGeezy 125

SVGeneration 110

SVG for Everybody 37

SVGMagic 128

SVGO 61–65

SVGO GUI 64

SVGOMG 66

SVG Optimiser 66

symbol 28–30

T

text 136

The Web Ahead 4, 16

title 135

turbulence 105

Twitter 28

U

URL-encode 51

URL parameter 35

User-Agent 38

V

vector vs. raster 5

Verou, Lea 94

viewBox 27–30, 71–73

viewport 71–73, 84

W

W3C 143

Watson, Léonie 134

WebKit 37

WebP 6

Windows 40

X

X11 18

XHR 41

XHR request 41–42

XML 34

Z

z-index 20

ABOUT THE AUTHOR

Chris Coyier is a web designer and developer.
He writes about all things web at CSS-Tricks,
talks about all things web at conferences
around the world and on his podcast
ShopTalk, and cofounded the web-coding
playground CodePen.

Photo by James Willamor

ABOUT A BOOK APART

We cover the emerging and essential topics in web design and
development with style, clarity, and above all, brevity—because working
designer-developers can’t a�ord to waste time.

COLOPHON

The text is set in FF Yoga and its companion, FF Yoga Sans, both by
Xavier Dupré. Headlines and cover are set in Titling Gothic by David
Berlow.

TABLE OF CONTENTS

Cover

More From A Book Apart

Foreword

Introduction

Chapter 1. The Basics of Using SVG

Chapter 2. Software

Chapter 3. Building an Icon System

Chapter 4. Build Tools

Chapter 5. Optimizing SVG

Chapter 6. Sizing and Scaling SVG

Chapter 7. Animating SVG

Chapter 8. Some Design Features

Chapter 9. Fallbacks

Conclusion

Resources

Acknowledgments

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_6a1w5t/5xnj0d_pdf_out/OEBPS/cover.xhtml

References

Index

About the Author

About A Book Apart

	More from A Book Apart
	Foreword
	Introduction
	Chapter 1. The Basics of Using SVG
	Chapter 2. Software
	Chapter 3. Building an Icon System
	Chapter 4. Build Tools
	Chapter 5. Optimizing SVG
	Chapter 6. Sizing and Scaling SVG
	Chapter 7. Animating SVG
	Chapter 8. Some Design Features
	Chapter 9. Fallbacks
	Conclusion
	Resources
	Acknowledgments
	References
	Index
	About the Author
	About A Book Apart

